分类纵向和时间序列数据的可视化。

Stephen J Tueller, Richard A Van Dorn, Georgiy V Bobashev
{"title":"分类纵向和时间序列数据的可视化。","authors":"Stephen J Tueller,&nbsp;Richard A Van Dorn,&nbsp;Georgiy V Bobashev","doi":"10.3768/rtipress.2016.mr.0033.1602","DOIUrl":null,"url":null,"abstract":"<p><p>Plotting growth curves is a powerful graphical approach used in exploratory data analysis for continuous longitudinal data. However, plotted growth curves for multiple participants rapidly become uninterpretable with categorical data. Categorical data define specific states (e.g., being single, married, divorced), and these states do not necessarily need to represent any hierarchical order. Thus, a trajectory becomes a sequence of states rather than a continuum. We introduce a horizontal line plot that uses shade or color to differentiate between states on a categorical longitudinal variable for multiple participants. With appropriate sorting, stacking the horizontal lines that represent each participant can reveal important patterns such as the shape of, or heterogeneity in, the trajectories. We illustrate the plotting techniques for large sample sizes, observed groups, the exploration of unobserved latent classes, large numbers of time points such as are found with intensive longitudinal designs or multivariate time series data, individually varying times observation, unique numbers of observations, and missing data. We used the R package longCatEDA to create the illustrations. Illustrative data include both simulated data and alcohol consumption data in adult schizophrenics from the Clinical Antipsychotic Trials of Intervention Effectiveness.</p>","PeriodicalId":88935,"journal":{"name":"Methods report (RTI Press)","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000555/pdf/nihms774453.pdf","citationCount":"16","resultStr":"{\"title\":\"Visualization of Categorical Longitudinal and Times Series Data.\",\"authors\":\"Stephen J Tueller,&nbsp;Richard A Van Dorn,&nbsp;Georgiy V Bobashev\",\"doi\":\"10.3768/rtipress.2016.mr.0033.1602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plotting growth curves is a powerful graphical approach used in exploratory data analysis for continuous longitudinal data. However, plotted growth curves for multiple participants rapidly become uninterpretable with categorical data. Categorical data define specific states (e.g., being single, married, divorced), and these states do not necessarily need to represent any hierarchical order. Thus, a trajectory becomes a sequence of states rather than a continuum. We introduce a horizontal line plot that uses shade or color to differentiate between states on a categorical longitudinal variable for multiple participants. With appropriate sorting, stacking the horizontal lines that represent each participant can reveal important patterns such as the shape of, or heterogeneity in, the trajectories. We illustrate the plotting techniques for large sample sizes, observed groups, the exploration of unobserved latent classes, large numbers of time points such as are found with intensive longitudinal designs or multivariate time series data, individually varying times observation, unique numbers of observations, and missing data. We used the R package longCatEDA to create the illustrations. Illustrative data include both simulated data and alcohol consumption data in adult schizophrenics from the Clinical Antipsychotic Trials of Intervention Effectiveness.</p>\",\"PeriodicalId\":88935,\"journal\":{\"name\":\"Methods report (RTI Press)\",\"volume\":\"2016 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000555/pdf/nihms774453.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods report (RTI Press)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3768/rtipress.2016.mr.0033.1602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods report (RTI Press)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3768/rtipress.2016.mr.0033.1602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

绘制增长曲线是一种强大的图形方法,用于连续纵向数据的探索性数据分析。然而,绘制的多个参与者的增长曲线很快变得无法解释与分类数据。分类数据定义了特定的状态(例如,单身、已婚、离婚),这些状态不一定需要表示任何等级顺序。这样,轨迹就变成了状态的序列,而不是连续体。我们引入了一个水平线图,它使用阴影或颜色来区分多个参与者在分类纵向变量上的状态。通过适当的排序,叠加代表每个参与者的水平线可以揭示重要的模式,例如轨迹的形状或异质性。我们说明了大样本量、观察组、探索未观察到的潜在类别、大量时间点(如密集的纵向设计或多变量时间序列数据)、单独变化的时间观察、唯一的观察数和缺失数据的绘图技术。我们使用R包longCatEDA来创建插图。说明性数据包括来自临床抗精神病药物干预有效性试验的成人精神分裂症患者的模拟数据和酒精消耗数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of Categorical Longitudinal and Times Series Data.

Plotting growth curves is a powerful graphical approach used in exploratory data analysis for continuous longitudinal data. However, plotted growth curves for multiple participants rapidly become uninterpretable with categorical data. Categorical data define specific states (e.g., being single, married, divorced), and these states do not necessarily need to represent any hierarchical order. Thus, a trajectory becomes a sequence of states rather than a continuum. We introduce a horizontal line plot that uses shade or color to differentiate between states on a categorical longitudinal variable for multiple participants. With appropriate sorting, stacking the horizontal lines that represent each participant can reveal important patterns such as the shape of, or heterogeneity in, the trajectories. We illustrate the plotting techniques for large sample sizes, observed groups, the exploration of unobserved latent classes, large numbers of time points such as are found with intensive longitudinal designs or multivariate time series data, individually varying times observation, unique numbers of observations, and missing data. We used the R package longCatEDA to create the illustrations. Illustrative data include both simulated data and alcohol consumption data in adult schizophrenics from the Clinical Antipsychotic Trials of Intervention Effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Attention to Tobacco-Related Stimuli in a 3D Virtual Store Interactive visualization to facilitate monitoring longitudinal survey data and paradata Implications of Alternative Land Conversion Cost Specifications on Projected Afforestation Potential in the United States. A Control Theory Model of Smoking. Visualization of Categorical Longitudinal and Times Series Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1