人口与健康调查点位移对点-多边形分析的影响。

IF 1.1 Q3 DEMOGRAPHY Spatial Demography Pub Date : 2016-07-01 Epub Date: 2015-06-20 DOI:10.1007/s40980-015-0015-z
Joshua L Warren, Carolina Perez-Heydrich, Clara R Burgert, Michael E Emch
{"title":"人口与健康调查点位移对点-多边形分析的影响。","authors":"Joshua L Warren,&nbsp;Carolina Perez-Heydrich,&nbsp;Clara R Burgert,&nbsp;Michael E Emch","doi":"10.1007/s40980-015-0015-z","DOIUrl":null,"url":null,"abstract":"<p><p>We use Demographic and Health Survey (DHS) data to evaluate the impact of random spatial displacements on analyses that involve assigning covariate values from ancillary areal and point feature data. We introduce a method to determine the maximum probability covariate (MPC), and compare this to the naive covariate (NC) selection method with respect to obtaining the true covariate of interest. The MPC selection method outperforms the NC selection method by increasing the probability that the correct covariate is chosen. Proposed guidelines also address how characteristics of ancillary areal and point features contribute to uncertainty in covariate assignment.</p>","PeriodicalId":43022,"journal":{"name":"Spatial Demography","volume":"4 2","pages":"117-133"},"PeriodicalIF":1.1000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40980-015-0015-z","citationCount":"7","resultStr":"{\"title\":\"Influence of Demographic and Health Survey Point Displacements on Point-in-Polygon Analyses.\",\"authors\":\"Joshua L Warren,&nbsp;Carolina Perez-Heydrich,&nbsp;Clara R Burgert,&nbsp;Michael E Emch\",\"doi\":\"10.1007/s40980-015-0015-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We use Demographic and Health Survey (DHS) data to evaluate the impact of random spatial displacements on analyses that involve assigning covariate values from ancillary areal and point feature data. We introduce a method to determine the maximum probability covariate (MPC), and compare this to the naive covariate (NC) selection method with respect to obtaining the true covariate of interest. The MPC selection method outperforms the NC selection method by increasing the probability that the correct covariate is chosen. Proposed guidelines also address how characteristics of ancillary areal and point features contribute to uncertainty in covariate assignment.</p>\",\"PeriodicalId\":43022,\"journal\":{\"name\":\"Spatial Demography\",\"volume\":\"4 2\",\"pages\":\"117-133\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40980-015-0015-z\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Demography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40980-015-0015-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Demography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40980-015-0015-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 7

摘要

我们使用人口与健康调查(DHS)数据来评估随机空间位移对分析的影响,这些分析涉及分配辅助面积和点特征数据的协变量值。我们介绍了一种确定最大概率协变量(MPC)的方法,并将其与朴素协变量(NC)选择方法在获得真正感兴趣的协变量方面进行了比较。MPC选择方法通过增加选择正确协变量的概率而优于NC选择方法。建议的指南还解决了辅助面和点特征的特征如何导致协变量分配的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Demographic and Health Survey Point Displacements on Point-in-Polygon Analyses.

We use Demographic and Health Survey (DHS) data to evaluate the impact of random spatial displacements on analyses that involve assigning covariate values from ancillary areal and point feature data. We introduce a method to determine the maximum probability covariate (MPC), and compare this to the naive covariate (NC) selection method with respect to obtaining the true covariate of interest. The MPC selection method outperforms the NC selection method by increasing the probability that the correct covariate is chosen. Proposed guidelines also address how characteristics of ancillary areal and point features contribute to uncertainty in covariate assignment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Demography
Spatial Demography DEMOGRAPHY-
自引率
0.00%
发文量
12
期刊介绍: Spatial Demography focuses on understanding the spatial and spatiotemporal dimension of demographic processes.  More specifically, the journal is interested in submissions that include the innovative use and adoption of spatial concepts, geospatial data, spatial technologies, and spatial analytic methods that further our understanding of demographic and policy-related related questions. The journal publishes both substantive and methodological papers from across the discipline of demography and its related fields (including economics, geography, sociology, anthropology, environmental science) and in applications ranging from local to global scale. In addition to research articles the journal will consider for publication review essays, book reviews, and reports/reviews on data, software, and instructional resources.
期刊最新文献
Geospatial Analysis of the Socioeconomic and Demographic Effects of Historic Coal Mining in the Greater Pittsburgh Region, Pennsylvania, USA Spatial Proximity of Regional Socio-Economic and Demographic Characteristics and Its Spillover Effects on Spousal Violence Against Women in Indian Context Bayesian Multivariate Spatial Modelling of Risky Sexual Behaviour Among Young People in Nigeria The Local Regression Approach as a Tool to Improve Place-Based Policies: The Case of Molise (Southern Italy) Correction: An Example of Combining Expert Judgment and Small Area Projection Methods: Forecasting for Water District Needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1