c臂CT系统膝关节成像中过度曝光伪影的运动学校正。

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2016-01-01 Epub Date: 2016-07-19 DOI:10.1155/2016/2502486
Johannes Rausch, Andreas Maier, Rebecca Fahrig, Jang-Hwan Choi, Waldo Hinshaw, Frank Schebesch, Sven Haase, Jakob Wasza, Joachim Hornegger, Christian Riess
{"title":"c臂CT系统膝关节成像中过度曝光伪影的运动学校正。","authors":"Johannes Rausch,&nbsp;Andreas Maier,&nbsp;Rebecca Fahrig,&nbsp;Jang-Hwan Choi,&nbsp;Waldo Hinshaw,&nbsp;Frank Schebesch,&nbsp;Sven Haase,&nbsp;Jakob Wasza,&nbsp;Joachim Hornegger,&nbsp;Christian Riess","doi":"10.1155/2016/2502486","DOIUrl":null,"url":null,"abstract":"<p><p>Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on standing patients to diagnose diseases like osteoarthritis. However, one serious issue is overexposure of the detector in regions close to the patella, which can not be tackled with common techniques. Methods. A Kinect camera is used to algorithmically remove overexposure artifacts close to the knee surface. Overexposed near-surface knee regions are corrected by extrapolating the absorption values from more reliable projection data. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. Results. Artifacts at both knee phantoms are reduced significantly in the reconstructed data and a major part of the truncated regions is restored. Conclusion. The results emphasize the feasibility of the proposed approach. The accuracy of the cross-calibration procedure can be increased to further improve correction results. Significance. The correction method can be extended to a multi-Kinect setup for use in real-world scenarios. Using depth cameras does not require prior scans and offers the possibility of a temporally synchronized correction of overexposure artifacts. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. </p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2016 ","pages":"2502486"},"PeriodicalIF":3.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/2502486","citationCount":"12","resultStr":"{\"title\":\"Kinect-Based Correction of Overexposure Artifacts in Knee Imaging with C-Arm CT Systems.\",\"authors\":\"Johannes Rausch,&nbsp;Andreas Maier,&nbsp;Rebecca Fahrig,&nbsp;Jang-Hwan Choi,&nbsp;Waldo Hinshaw,&nbsp;Frank Schebesch,&nbsp;Sven Haase,&nbsp;Jakob Wasza,&nbsp;Joachim Hornegger,&nbsp;Christian Riess\",\"doi\":\"10.1155/2016/2502486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on standing patients to diagnose diseases like osteoarthritis. However, one serious issue is overexposure of the detector in regions close to the patella, which can not be tackled with common techniques. Methods. A Kinect camera is used to algorithmically remove overexposure artifacts close to the knee surface. Overexposed near-surface knee regions are corrected by extrapolating the absorption values from more reliable projection data. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. Results. Artifacts at both knee phantoms are reduced significantly in the reconstructed data and a major part of the truncated regions is restored. Conclusion. The results emphasize the feasibility of the proposed approach. The accuracy of the cross-calibration procedure can be increased to further improve correction results. Significance. The correction method can be extended to a multi-Kinect setup for use in real-world scenarios. Using depth cameras does not require prior scans and offers the possibility of a temporally synchronized correction of overexposure artifacts. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. </p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2016 \",\"pages\":\"2502486\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/2502486\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/2502486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/2502486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 12

摘要

目标。演示一种补偿膝关节CT扫描中过度暴露伪影的新方法,而无需在患者身上附加任何支持装置。c臂CT系统提供了对站立患者进行负重膝盖扫描以诊断骨关节炎等疾病的机会。然而,一个严重的问题是探测器在靠近髌骨的区域过度曝光,这是普通技术无法解决的。方法。Kinect摄像头用于通过算法去除靠近膝盖表面的过度曝光伪影。通过从更可靠的投影数据外推吸收值来纠正过度暴露的近地表膝盖区域。为了实现这一点,我们开发了一个交叉校准程序,将Kinect的表面点转换为CT体素坐标。结果。在重建数据中,两个膝关节的伪影明显减少,大部分被截断的区域得以恢复。结论。研究结果强调了该方法的可行性。可以提高交叉校准过程的精度,进一步改善校正结果。的意义。校正方法可以扩展到在现实场景中使用的多kinect设置。使用深度相机不需要事先扫描,并提供了暂时同步校正过度曝光伪影的可能性。为了实现这一点,我们开发了一个交叉校准程序,将Kinect的表面点转换为CT体素坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinect-Based Correction of Overexposure Artifacts in Knee Imaging with C-Arm CT Systems.

Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on standing patients to diagnose diseases like osteoarthritis. However, one serious issue is overexposure of the detector in regions close to the patella, which can not be tackled with common techniques. Methods. A Kinect camera is used to algorithmically remove overexposure artifacts close to the knee surface. Overexposed near-surface knee regions are corrected by extrapolating the absorption values from more reliable projection data. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. Results. Artifacts at both knee phantoms are reduced significantly in the reconstructed data and a major part of the truncated regions is restored. Conclusion. The results emphasize the feasibility of the proposed approach. The accuracy of the cross-calibration procedure can be increased to further improve correction results. Significance. The correction method can be extended to a multi-Kinect setup for use in real-world scenarios. Using depth cameras does not require prior scans and offers the possibility of a temporally synchronized correction of overexposure artifacts. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1