2株实验室酿酒酵母菌通过l -苯丙氨酸生物转化提高2-苯乙醇产量

IF 1.2 Q2 Biochemistry, Genetics and Molecular Biology Journal of Molecular Microbiology and Biotechnology Pub Date : 2017-01-01 Epub Date: 2017-02-24 DOI:10.1159/000455169
Jolanta Mierzejewska, Aleksandra Tymoszewska, Karolina Chreptowicz, Kamil Krol
{"title":"2株实验室酿酒酵母菌通过l -苯丙氨酸生物转化提高2-苯乙醇产量","authors":"Jolanta Mierzejewska,&nbsp;Aleksandra Tymoszewska,&nbsp;Karolina Chreptowicz,&nbsp;Kamil Krol","doi":"10.1159/000455169","DOIUrl":null,"url":null,"abstract":"<p><p>2-Phenylethanol (2-PE) is an aromatic alcohol with a rosy scent which is widely used in the food, fragrance, and cosmetic industries. Promising sources of natural 2-PE are microorganisms, especially yeasts, which can produce 2-PE by biosynthesis and biotransformation. Thus, the first challenging goal in the development of biotechnological production of 2-PE is searching for highly productive yeast strains. In the present work, 5 laboratory Saccharomyces cerevisiae strains were tested for the production of 2-PE. Thereafter, 2 of them were hybridized by a mating procedure and, as a result, a new diploid, S. cerevisiae AM1-d, was selected. Within the 72-h batch culture in a medium containing 5 g/L of L-phenylalanine, AM1-d produced 3.83 g/L of 2-PE in a shaking flask. In this way, we managed to select the diploid S. cerevisiae AM1-d strain, showing a 3- and 5-fold increase in 2-PE production in comparison to parental strains. Remarkably, the enhanced production of 2-PE by the hybrid of 2 yeast laboratory strains is demonstrated here for the first time.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000455169","citationCount":"19","resultStr":"{\"title\":\"Mating of 2 Laboratory Saccharomyces cerevisiae Strains Resulted in Enhanced Production of 2-Phenylethanol by Biotransformation of L-Phenylalanine.\",\"authors\":\"Jolanta Mierzejewska,&nbsp;Aleksandra Tymoszewska,&nbsp;Karolina Chreptowicz,&nbsp;Kamil Krol\",\"doi\":\"10.1159/000455169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>2-Phenylethanol (2-PE) is an aromatic alcohol with a rosy scent which is widely used in the food, fragrance, and cosmetic industries. Promising sources of natural 2-PE are microorganisms, especially yeasts, which can produce 2-PE by biosynthesis and biotransformation. Thus, the first challenging goal in the development of biotechnological production of 2-PE is searching for highly productive yeast strains. In the present work, 5 laboratory Saccharomyces cerevisiae strains were tested for the production of 2-PE. Thereafter, 2 of them were hybridized by a mating procedure and, as a result, a new diploid, S. cerevisiae AM1-d, was selected. Within the 72-h batch culture in a medium containing 5 g/L of L-phenylalanine, AM1-d produced 3.83 g/L of 2-PE in a shaking flask. In this way, we managed to select the diploid S. cerevisiae AM1-d strain, showing a 3- and 5-fold increase in 2-PE production in comparison to parental strains. Remarkably, the enhanced production of 2-PE by the hybrid of 2 yeast laboratory strains is demonstrated here for the first time.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000455169\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000455169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000455169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 19

摘要

2-苯乙醇(2-PE)是一种具有玫瑰色香味的芳香醇,广泛用于食品、香料和化妆品行业。天然2-PE的潜在来源是微生物,特别是酵母,它们可以通过生物合成和生物转化产生2-PE。因此,开发2-PE生物技术生产的第一个具有挑战性的目标是寻找高产酵母菌株。本研究以5株酿酒酵母菌为原料,对其生产2-PE进行了实验研究。然后,对其中的2个进行杂交,得到一个新的二倍体,酿酒酵母AM1-d。在含有5 g/L -苯丙氨酸的培养基中,AM1-d在摇瓶中批量培养72小时,产生3.83 g/L的2-PE。通过这种方法,我们成功地选择了二倍体酿酒酵母AM1-d菌株,与亲本菌株相比,2-PE产量增加了3倍和5倍。值得注意的是,本文首次证实了2株实验室酵母菌的杂交提高了2- pe的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mating of 2 Laboratory Saccharomyces cerevisiae Strains Resulted in Enhanced Production of 2-Phenylethanol by Biotransformation of L-Phenylalanine.

2-Phenylethanol (2-PE) is an aromatic alcohol with a rosy scent which is widely used in the food, fragrance, and cosmetic industries. Promising sources of natural 2-PE are microorganisms, especially yeasts, which can produce 2-PE by biosynthesis and biotransformation. Thus, the first challenging goal in the development of biotechnological production of 2-PE is searching for highly productive yeast strains. In the present work, 5 laboratory Saccharomyces cerevisiae strains were tested for the production of 2-PE. Thereafter, 2 of them were hybridized by a mating procedure and, as a result, a new diploid, S. cerevisiae AM1-d, was selected. Within the 72-h batch culture in a medium containing 5 g/L of L-phenylalanine, AM1-d produced 3.83 g/L of 2-PE in a shaking flask. In this way, we managed to select the diploid S. cerevisiae AM1-d strain, showing a 3- and 5-fold increase in 2-PE production in comparison to parental strains. Remarkably, the enhanced production of 2-PE by the hybrid of 2 yeast laboratory strains is demonstrated here for the first time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Microbiology and Biotechnology
Journal of Molecular Microbiology and Biotechnology 生物-生物工程与应用微生物
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.
期刊最新文献
Contents Front & Back Matter The Life Cycle of Dictyostelium discoideum Is Accelerated via MAP Kinase Cascade by a Culture Extract Produced by a Synthetic Microbial Consortium A Riboflavin Transporter in Bdellovibrio exovorous JSS Front & Back Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1