小鼠炎症性肠病的探索:化学诱导的炎症性肠病(IBD)小鼠模型

Q1 Agricultural and Biological Sciences Current protocols in mouse biology Pub Date : 2017-03-02 DOI:10.1002/cpmo.20
Raffaella Maria Gadaleta, Oihane Garcia-Irigoyen, Antonio Moschetta
{"title":"小鼠炎症性肠病的探索:化学诱导的炎症性肠病(IBD)小鼠模型","authors":"Raffaella Maria Gadaleta,&nbsp;Oihane Garcia-Irigoyen,&nbsp;Antonio Moschetta","doi":"10.1002/cpmo.20","DOIUrl":null,"url":null,"abstract":"<p>Inflammatory bowel disease (IBD) is a chronic multifactorial inflammatory disorder characterized by periods of activation and remission of intestinal inflammation, with potentially severe complications, that can lead to mortality. Experimental animal models of intestinal inflammation are crucial for understanding the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two major human IBD phenotypes. Animal models have been instrumental in unveiling the molecular background of IBD, and although a single model is not able to capture the complexity of this disease, each of them provided valuable insight into its different aspects. Chemically induced models of intestinal inflammation, mainly dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, are widely used. This article describes DSS- and TNBS-induced colitis models and their relevance to IBD pathophysiology and pre-clinical therapeutic management. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":37980,"journal":{"name":"Current protocols in mouse biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmo.20","citationCount":"31","resultStr":"{\"title\":\"Exploration of Inflammatory Bowel Disease in Mice: Chemically Induced Murine Models of Inflammatory Bowel Disease (IBD)\",\"authors\":\"Raffaella Maria Gadaleta,&nbsp;Oihane Garcia-Irigoyen,&nbsp;Antonio Moschetta\",\"doi\":\"10.1002/cpmo.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inflammatory bowel disease (IBD) is a chronic multifactorial inflammatory disorder characterized by periods of activation and remission of intestinal inflammation, with potentially severe complications, that can lead to mortality. Experimental animal models of intestinal inflammation are crucial for understanding the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two major human IBD phenotypes. Animal models have been instrumental in unveiling the molecular background of IBD, and although a single model is not able to capture the complexity of this disease, each of them provided valuable insight into its different aspects. Chemically induced models of intestinal inflammation, mainly dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, are widely used. This article describes DSS- and TNBS-induced colitis models and their relevance to IBD pathophysiology and pre-clinical therapeutic management. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":37980,\"journal\":{\"name\":\"Current protocols in mouse biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmo.20\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in mouse biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmo.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in mouse biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmo.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 31

摘要

炎症性肠病(IBD)是一种慢性多因素炎症性疾病,其特征是肠道炎症的激活和缓解期,具有潜在的严重并发症,可导致死亡。肠道炎症的实验动物模型对于理解克罗恩病(CD)和溃疡性结肠炎(UC)这两种主要的人类IBD表型的发病机制至关重要。动物模型有助于揭示IBD的分子背景,尽管单一模型无法捕捉这种疾病的复杂性,但每种模型都提供了对其不同方面的有价值的见解。化学诱导的肠道炎症模型,主要是葡聚糖硫酸钠(DSS)-和2,4,6-三硝基苯磺酸(TNBS)-诱导的结肠炎,被广泛使用。本文描述了DSS和tnbs诱导的结肠炎模型及其与IBD病理生理和临床前治疗管理的相关性。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploration of Inflammatory Bowel Disease in Mice: Chemically Induced Murine Models of Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease (IBD) is a chronic multifactorial inflammatory disorder characterized by periods of activation and remission of intestinal inflammation, with potentially severe complications, that can lead to mortality. Experimental animal models of intestinal inflammation are crucial for understanding the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two major human IBD phenotypes. Animal models have been instrumental in unveiling the molecular background of IBD, and although a single model is not able to capture the complexity of this disease, each of them provided valuable insight into its different aspects. Chemically induced models of intestinal inflammation, mainly dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, are widely used. This article describes DSS- and TNBS-induced colitis models and their relevance to IBD pathophysiology and pre-clinical therapeutic management. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in mouse biology
Current protocols in mouse biology Agricultural and Biological Sciences-Animal Science and Zoology
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet, all too often, nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. The aim of Current Protocols in Mouse Biology is to provide the clearest, most detailed and reliable step-by-step instructions for protocols involving the use of mice in biomedical research. Written by experts in the field and extensively edited to our exacting standards, the protocols include all of the information necessary to complete an experiment in the laboratory—introduction, materials lists with supplier information, detailed step-by-step procedures with helpful annotations, recipes for reagents and solutions, illustrative figures and information-packed tables. Each article also provides invaluable discussions of background information, applications of the methods, important assumptions, key parameters, time considerations, and tips to help avoid common pitfalls and troubleshoot experiments. Furthermore, Current Protocols in Mouse Biology content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Mouse Biology brings together resources in mouse biology and genetics and provides a mouse protocol resource that covers all aspects of mouse biology. Current Protocols in Mouse Biology also permits optimization of mouse model usage, which is significantly impacted by both cost and ethical constraints. Optimal and standardized mouse protocols ultimately reduce experimental variability and reduce the number of animals used in mouse experiments.
期刊最新文献
Issue Information The Kinetics of Intestinal Permeability in a Mouse Model of Traumatic Brain Injury An Ex Vivo Acid Injury and Repair (AIR) Model Using Precision-Cut Lung Slices to Understand Lung Injury and Repair Tackling the Mouse-on-Mouse Problem in Cochlear Immunofluorescence: A Simple Double-Blocking Protocol for Immunofluorescent Labeling of Murine Cochlear Sections with Primary Mouse Antibodies Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1