{"title":"用微型机器人进行微操作","authors":"M Arifur Rahman;Aaron T. Ohta","doi":"10.1109/OJNANO.2021.3050496","DOIUrl":null,"url":null,"abstract":"Microrobots are promising tools for applications that require micromanipulation, such as single-cell manipulation and surgery, tissue engineering, and desktop manufacturing. This paper briefly reviews common microrobot actuation mechanisms, then reviews current progress in several capabilities that are desirable for micromanipulation, with an emphasis on optothermal microrobots.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"8-15"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2021.3050496","citationCount":"0","resultStr":"{\"title\":\"Micromanipulation With Microrobots\",\"authors\":\"M Arifur Rahman;Aaron T. Ohta\",\"doi\":\"10.1109/OJNANO.2021.3050496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microrobots are promising tools for applications that require micromanipulation, such as single-cell manipulation and surgery, tissue engineering, and desktop manufacturing. This paper briefly reviews common microrobot actuation mechanisms, then reviews current progress in several capabilities that are desirable for micromanipulation, with an emphasis on optothermal microrobots.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"2 \",\"pages\":\"8-15\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/OJNANO.2021.3050496\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9320613/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9320613/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microrobots are promising tools for applications that require micromanipulation, such as single-cell manipulation and surgery, tissue engineering, and desktop manufacturing. This paper briefly reviews common microrobot actuation mechanisms, then reviews current progress in several capabilities that are desirable for micromanipulation, with an emphasis on optothermal microrobots.