{"title":"小型风力发电机噪声源识别的计算声波束形成。","authors":"Ping Ma, Fue-Sang Lien, Eugene Yee","doi":"10.1155/2017/7061391","DOIUrl":null,"url":null,"abstract":"<p><p>This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.</p>","PeriodicalId":14433,"journal":{"name":"International Scholarly Research Notices","volume":"2017 ","pages":"7061391"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7061391","citationCount":"2","resultStr":"{\"title\":\"Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.\",\"authors\":\"Ping Ma, Fue-Sang Lien, Eugene Yee\",\"doi\":\"10.1155/2017/7061391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.</p>\",\"PeriodicalId\":14433,\"journal\":{\"name\":\"International Scholarly Research Notices\",\"volume\":\"2017 \",\"pages\":\"7061391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/7061391\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Scholarly Research Notices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/7061391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Scholarly Research Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/7061391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.
This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.