Andrey V. Kazakov;Efim M. Oks;Nikolay A. Panchenko
{"title":"前真空压力范围内脉冲电子束辐照金属靶束等离子体离子通量的研究","authors":"Andrey V. Kazakov;Efim M. Oks;Nikolay A. Panchenko","doi":"10.1109/TPS.2023.3304058","DOIUrl":null,"url":null,"abstract":"We describe our investigations of the influence of electron beam parameters and working gas on the ion flux coming from the beam-produced plasma (beam plasma) to a target irradiated by a pulsed low-energy (up to 9 keV) electron beam in the forevacuum pressure range 4–15 Pa. The ion current from the beam-produced plasma to the target increases with increasing gas pressure and beam current, but decreases with increasing beam accelerating voltage. The use of gas with a greater ionization cross section leads to greater ion flux and correspondingly higher ion current to the irradiated target. The value of ion current to the target from the beam-plasma does not exceed 20% of the electron beam current. The observed dependencies of ion flux (current) to the target are due to changes in the beam-plasma density near the target. These results contribute to our understanding of the generation of beam-plasma by a pulsed electron beam and suggest the application of the ion flux from the beam-plasma to assist in electron-beam modification of dielectric materials in the forevacuum pressure region.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"51 8","pages":"2245-2251"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Ion Flux From Beam Plasma to a Metal Target Irradiated by a Pulsed Electron Beam in the Forevacuum Pressure Range\",\"authors\":\"Andrey V. Kazakov;Efim M. Oks;Nikolay A. Panchenko\",\"doi\":\"10.1109/TPS.2023.3304058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our investigations of the influence of electron beam parameters and working gas on the ion flux coming from the beam-produced plasma (beam plasma) to a target irradiated by a pulsed low-energy (up to 9 keV) electron beam in the forevacuum pressure range 4–15 Pa. The ion current from the beam-produced plasma to the target increases with increasing gas pressure and beam current, but decreases with increasing beam accelerating voltage. The use of gas with a greater ionization cross section leads to greater ion flux and correspondingly higher ion current to the irradiated target. The value of ion current to the target from the beam-plasma does not exceed 20% of the electron beam current. The observed dependencies of ion flux (current) to the target are due to changes in the beam-plasma density near the target. These results contribute to our understanding of the generation of beam-plasma by a pulsed electron beam and suggest the application of the ion flux from the beam-plasma to assist in electron-beam modification of dielectric materials in the forevacuum pressure region.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"51 8\",\"pages\":\"2245-2251\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10225454/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10225454/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
On the Ion Flux From Beam Plasma to a Metal Target Irradiated by a Pulsed Electron Beam in the Forevacuum Pressure Range
We describe our investigations of the influence of electron beam parameters and working gas on the ion flux coming from the beam-produced plasma (beam plasma) to a target irradiated by a pulsed low-energy (up to 9 keV) electron beam in the forevacuum pressure range 4–15 Pa. The ion current from the beam-produced plasma to the target increases with increasing gas pressure and beam current, but decreases with increasing beam accelerating voltage. The use of gas with a greater ionization cross section leads to greater ion flux and correspondingly higher ion current to the irradiated target. The value of ion current to the target from the beam-plasma does not exceed 20% of the electron beam current. The observed dependencies of ion flux (current) to the target are due to changes in the beam-plasma density near the target. These results contribute to our understanding of the generation of beam-plasma by a pulsed electron beam and suggest the application of the ion flux from the beam-plasma to assist in electron-beam modification of dielectric materials in the forevacuum pressure region.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.