多通道线路隧道场效应管栅极间最佳分离与重叠源

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2020-06-01 DOI:10.1109/OJNANO.2020.2998939
Narasimhulu Thoti;Yiming Li;Sekhar Reddy Kola;Seiji Samukawa
{"title":"多通道线路隧道场效应管栅极间最佳分离与重叠源","authors":"Narasimhulu Thoti;Yiming Li;Sekhar Reddy Kola;Seiji Samukawa","doi":"10.1109/OJNANO.2020.2998939","DOIUrl":null,"url":null,"abstract":"This work comprises of design and simulation of multi-channel line tunnel field-effect transistors (mCLTFETs) by scaling inter-gate separation (IGS) and overlapped source (L\n<sub>OV</sub>\n). The scope of the work is to explore the performance boost and optimization of the studied devices by considering geometrical structures, low-bandgap materials, IGS and L\n<sub>OV</sub>\n of the mCLTFETs. The structure is designed without diminishing the subthreshold swing (SS) and the leakage currents through a spacer technology and strained Si\n<sub>0.6</sub>\nGe\n<sub>0.4</sub>\n. The optimal values of IGS and L\n<sub>OV</sub>\n for the multi-channel concept are estimated subject to several physical constraints of the proposed device. An IGS ≈ 10 nm and a L\n<sub>OV</sub>\n ≈ L\n<sub>G</sub>\n/2 are reported as suitable choice for sub-8-nm technological nodes, where SS = 18 mV/dec and I\n<sub>on</sub>\n/I\n<sub>off</sub>\n = 10\n<sup>9</sup>\n are achieved.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2020.2998939","citationCount":"11","resultStr":"{\"title\":\"Optimal Inter-Gate Separation and Overlapped Source of Multi-Channel Line Tunnel FETs\",\"authors\":\"Narasimhulu Thoti;Yiming Li;Sekhar Reddy Kola;Seiji Samukawa\",\"doi\":\"10.1109/OJNANO.2020.2998939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work comprises of design and simulation of multi-channel line tunnel field-effect transistors (mCLTFETs) by scaling inter-gate separation (IGS) and overlapped source (L\\n<sub>OV</sub>\\n). The scope of the work is to explore the performance boost and optimization of the studied devices by considering geometrical structures, low-bandgap materials, IGS and L\\n<sub>OV</sub>\\n of the mCLTFETs. The structure is designed without diminishing the subthreshold swing (SS) and the leakage currents through a spacer technology and strained Si\\n<sub>0.6</sub>\\nGe\\n<sub>0.4</sub>\\n. The optimal values of IGS and L\\n<sub>OV</sub>\\n for the multi-channel concept are estimated subject to several physical constraints of the proposed device. An IGS ≈ 10 nm and a L\\n<sub>OV</sub>\\n ≈ L\\n<sub>G</sub>\\n/2 are reported as suitable choice for sub-8-nm technological nodes, where SS = 18 mV/dec and I\\n<sub>on</sub>\\n/I\\n<sub>off</sub>\\n = 10\\n<sup>9</sup>\\n are achieved.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/OJNANO.2020.2998939\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9104887/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9104887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

本文主要研究了基于栅极间分离(IGS)和重叠源(LOV)的多通道线隧道场效应晶体管(mcltfet)的设计与仿真。本文的工作范围是通过考虑mcltfet的几何结构、低带隙材料、IGS和LOV来探索所研究器件的性能提升和优化。该结构通过间隔技术和应变Si0.6Ge0.4设计而不减小亚阈值摆幅(SS)和泄漏电流。多通道概念的IGS和LOV的最优值根据所提出的器件的几个物理约束进行了估计。IGS≈10 nm和LOV≈LG/2是亚8 nm技术节点的合适选择,其中SS = 18 mV/dec和Ion/Ioff = 109。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Inter-Gate Separation and Overlapped Source of Multi-Channel Line Tunnel FETs
This work comprises of design and simulation of multi-channel line tunnel field-effect transistors (mCLTFETs) by scaling inter-gate separation (IGS) and overlapped source (L OV ). The scope of the work is to explore the performance boost and optimization of the studied devices by considering geometrical structures, low-bandgap materials, IGS and L OV of the mCLTFETs. The structure is designed without diminishing the subthreshold swing (SS) and the leakage currents through a spacer technology and strained Si 0.6 Ge 0.4 . The optimal values of IGS and L OV for the multi-channel concept are estimated subject to several physical constraints of the proposed device. An IGS ≈ 10 nm and a L OV ≈ L G /2 are reported as suitable choice for sub-8-nm technological nodes, where SS = 18 mV/dec and I on /I off = 10 9 are achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing Design and Performance Analysis of ISFET Using Various Oxide Materials for Biosensing Applications Temperature-Dependent Hydrogen Modulations of Ultra-Scaled a-IGZO Thin Film Transistor Under Gate Bias Stress Analysis and Design of FeFET Synapse With Stacked-Nanosheet Architecture Considering Cycle-to-Cycle Variations for Neuromorphic Applications Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1