利用Illumina MiSeq平台对16S rRNA基因进行微生物群分析

Q1 Agricultural and Biological Sciences Current protocols in mouse biology Pub Date : 2017-06-19 DOI:10.1002/cpmo.29
Alexis Rapin, Céline Pattaroni, Benjamin J. Marsland, Nicola L. Harris
{"title":"利用Illumina MiSeq平台对16S rRNA基因进行微生物群分析","authors":"Alexis Rapin,&nbsp;Céline Pattaroni,&nbsp;Benjamin J. Marsland,&nbsp;Nicola L. Harris","doi":"10.1002/cpmo.29","DOIUrl":null,"url":null,"abstract":"<p>The microbiota have been shown to play an important role in diverse biological processes including immunity, metabolism, and digestion. Assessing the exact composition of the microbiota has proven challenging due to the often unknown growth specificities of its members, and culture-based approaches typically fail to capture the complete diversity of microorganisms present. Next Generation Sequencing (NGS) methods provide an efficient means to gather information about cultured and uncultured members of the microbiota. This article provides a method to characterize bacterial communities in terms of species composition using high-throughput sequencing. Briefly, by extracting the entire DNA content of a microbiota sample and performing a targeted high-throughput sequencing of the 16S rRNA gene, a phylogenetic marker for prokaryotes, prediction of the composition of the entire bacterial community is made possible. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":37980,"journal":{"name":"Current protocols in mouse biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmo.29","citationCount":"33","resultStr":"{\"title\":\"Microbiota Analysis Using an Illumina MiSeq Platform to Sequence 16S rRNA Genes\",\"authors\":\"Alexis Rapin,&nbsp;Céline Pattaroni,&nbsp;Benjamin J. Marsland,&nbsp;Nicola L. Harris\",\"doi\":\"10.1002/cpmo.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microbiota have been shown to play an important role in diverse biological processes including immunity, metabolism, and digestion. Assessing the exact composition of the microbiota has proven challenging due to the often unknown growth specificities of its members, and culture-based approaches typically fail to capture the complete diversity of microorganisms present. Next Generation Sequencing (NGS) methods provide an efficient means to gather information about cultured and uncultured members of the microbiota. This article provides a method to characterize bacterial communities in terms of species composition using high-throughput sequencing. Briefly, by extracting the entire DNA content of a microbiota sample and performing a targeted high-throughput sequencing of the 16S rRNA gene, a phylogenetic marker for prokaryotes, prediction of the composition of the entire bacterial community is made possible. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":37980,\"journal\":{\"name\":\"Current protocols in mouse biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmo.29\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in mouse biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmo.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in mouse biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmo.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 33

摘要

微生物群已被证明在多种生物过程中发挥重要作用,包括免疫、代谢和消化。由于其成员的生长特异性通常未知,评估微生物群的确切组成已被证明具有挑战性,并且基于培养的方法通常无法捕获存在的微生物的完整多样性。下一代测序(NGS)方法提供了一种有效的方法来收集有关培养和未培养微生物群成员的信息。本文提供了一种方法来表征细菌群落方面的物种组成使用高通量测序。简而言之,通过提取微生物群样本的全部DNA内容,并对原核生物的系统发育标记16S rRNA基因进行靶向高通量测序,可以预测整个细菌群落的组成。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbiota Analysis Using an Illumina MiSeq Platform to Sequence 16S rRNA Genes

The microbiota have been shown to play an important role in diverse biological processes including immunity, metabolism, and digestion. Assessing the exact composition of the microbiota has proven challenging due to the often unknown growth specificities of its members, and culture-based approaches typically fail to capture the complete diversity of microorganisms present. Next Generation Sequencing (NGS) methods provide an efficient means to gather information about cultured and uncultured members of the microbiota. This article provides a method to characterize bacterial communities in terms of species composition using high-throughput sequencing. Briefly, by extracting the entire DNA content of a microbiota sample and performing a targeted high-throughput sequencing of the 16S rRNA gene, a phylogenetic marker for prokaryotes, prediction of the composition of the entire bacterial community is made possible. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in mouse biology
Current protocols in mouse biology Agricultural and Biological Sciences-Animal Science and Zoology
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet, all too often, nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. The aim of Current Protocols in Mouse Biology is to provide the clearest, most detailed and reliable step-by-step instructions for protocols involving the use of mice in biomedical research. Written by experts in the field and extensively edited to our exacting standards, the protocols include all of the information necessary to complete an experiment in the laboratory—introduction, materials lists with supplier information, detailed step-by-step procedures with helpful annotations, recipes for reagents and solutions, illustrative figures and information-packed tables. Each article also provides invaluable discussions of background information, applications of the methods, important assumptions, key parameters, time considerations, and tips to help avoid common pitfalls and troubleshoot experiments. Furthermore, Current Protocols in Mouse Biology content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Mouse Biology brings together resources in mouse biology and genetics and provides a mouse protocol resource that covers all aspects of mouse biology. Current Protocols in Mouse Biology also permits optimization of mouse model usage, which is significantly impacted by both cost and ethical constraints. Optimal and standardized mouse protocols ultimately reduce experimental variability and reduce the number of animals used in mouse experiments.
期刊最新文献
Issue Information The Kinetics of Intestinal Permeability in a Mouse Model of Traumatic Brain Injury An Ex Vivo Acid Injury and Repair (AIR) Model Using Precision-Cut Lung Slices to Understand Lung Injury and Repair Tackling the Mouse-on-Mouse Problem in Cochlear Immunofluorescence: A Simple Double-Blocking Protocol for Immunofluorescent Labeling of Murine Cochlear Sections with Primary Mouse Antibodies Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1