大豆种子组成性状SNP基因分型研究进展。

International journal of plant genomics Pub Date : 2017-01-01 Epub Date: 2017-05-25 DOI:10.1155/2017/6572969
Gunvant Patil, Juhi Chaudhary, Tri D Vuong, Brian Jenkins, Dan Qiu, Suhas Kadam, Grover J Shannon, Henry T Nguyen
{"title":"大豆种子组成性状SNP基因分型研究进展。","authors":"Gunvant Patil,&nbsp;Juhi Chaudhary,&nbsp;Tri D Vuong,&nbsp;Brian Jenkins,&nbsp;Dan Qiu,&nbsp;Suhas Kadam,&nbsp;Grover J Shannon,&nbsp;Henry T Nguyen","doi":"10.1155/2017/6572969","DOIUrl":null,"url":null,"abstract":"<p><p>Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits.</p>","PeriodicalId":73471,"journal":{"name":"International journal of plant genomics","volume":"2017 ","pages":"6572969"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6572969","citationCount":"35","resultStr":"{\"title\":\"Development of SNP Genotyping Assays for Seed Composition Traits in Soybean.\",\"authors\":\"Gunvant Patil,&nbsp;Juhi Chaudhary,&nbsp;Tri D Vuong,&nbsp;Brian Jenkins,&nbsp;Dan Qiu,&nbsp;Suhas Kadam,&nbsp;Grover J Shannon,&nbsp;Henry T Nguyen\",\"doi\":\"10.1155/2017/6572969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits.</p>\",\"PeriodicalId\":73471,\"journal\":{\"name\":\"International journal of plant genomics\",\"volume\":\"2017 \",\"pages\":\"6572969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/6572969\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of plant genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/6572969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of plant genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/6572969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

大豆种子成分是决定大豆经济价值的重要因素之一。不同种子成分的质量和数量,如油、蛋白质和碳水化合物,是食品、饲料和许多工业产品的关键成分。大豆研究人员已经成功地开发和利用了一套多样化的分子标记来改善大豆育种计划中的种子性状。设计和开发准确、稳健、高通量、具有成本效益并可在通用基因分型平台上使用的分子分析方法势在必行。在本研究中,我们基于已知的功能性突变等位基因开发并验证了KASP(竞争性等位基因特异性聚合酶链反应)基因分型方法,用于种子组成性状,包括脂肪酸、低聚糖、胰蛋白酶抑制剂和脂氧合酶。这些方法在突变源和种群图谱上得到了验证,并精确区分了突变基因的纯合子和杂合子。本研究新开发的KASP分析方法具有明显的优势,可以替代先前为标记辅助选择(marker-assisted selection, MAS)而开发的基因分型分析方法。利用通用基因分型平台开发的功能性基因分析资源将有助于加快大豆种子组成性状的改良工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of SNP Genotyping Assays for Seed Composition Traits in Soybean.

Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen. Molecular Identification and Karyological Analysis of a Rampant Aspen Populus tremula L. (Salicaceae) Clone. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean. Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of Glycine max Application of Microsatellite Loci for Molecular Identification of Elite Genotypes, Analysis of Clonality, and Genetic Diversity in Aspen Populus tremula L. (Salicaceae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1