{"title":"用关联散点图探索SDSS数据集:I. EMP, CEMP和CV星。","authors":"Duane F Carbon, Christopher Henze, Bron C Nelson","doi":"10.3847/1538-4365/228/2/19","DOIUrl":null,"url":null,"abstract":"We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He ii emission CV stars found by the LSP approach that have not yet been discussed in the literature.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"228 2","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3847/1538-4365/228/2/19","citationCount":"5","resultStr":"{\"title\":\"Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars.\",\"authors\":\"Duane F Carbon, Christopher Henze, Bron C Nelson\",\"doi\":\"10.3847/1538-4365/228/2/19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He ii emission CV stars found by the LSP approach that have not yet been discussed in the literature.\",\"PeriodicalId\":8588,\"journal\":{\"name\":\"Astrophysical Journal Supplement Series\",\"volume\":\"228 2\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3847/1538-4365/228/2/19\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/228/2/19\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3847/1538-4365/228/2/19","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars.
We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He ii emission CV stars found by the LSP approach that have not yet been discussed in the literature.
期刊介绍:
The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.