嘉宾评论:纳米包装第一部分

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2021-12-24 DOI:10.1109/OJNANO.2021.3134382
Attila Bonyar;Brajesh Kumar Kaushik;James E. Morris
{"title":"嘉宾评论:纳米包装第一部分","authors":"Attila Bonyar;Brajesh Kumar Kaushik;James E. Morris","doi":"10.1109/OJNANO.2021.3134382","DOIUrl":null,"url":null,"abstract":"This is the first of two Special Sections on Nanopackaging. This first one has appeared in OJ-NANO Vol. 2, 2021 and the second will appear in Vol. 3, 2022. Electronics packaging is a very multidisciplinary activity requiring an understanding of Electrical, Mechanical, Materials, Thermal (and Thermomechanical) Engineering, and of the underlying Physics and Chemistry. The papers in these two Special sections will reflect this diversity, and the application of modern mathematical algorithms and computational techniques to advance the engineering design techniques. Nanopackaging could refer to the packaging of possibly disruptive nanoelectronics technologies, and this would undoubtedly be a challenging and useful field, but so far, the term has been applied more to the application of nanotechnologies to microelectronics packaging. Although this is the case with some of the papers in this collection, two are particularly driven by the packaging needs of the continuation of Moore’s Law into advanced nanoscales.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"201-202"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09662658.pdf","citationCount":"1","resultStr":"{\"title\":\"Guest Editorial: Nanopackaging Part I\",\"authors\":\"Attila Bonyar;Brajesh Kumar Kaushik;James E. Morris\",\"doi\":\"10.1109/OJNANO.2021.3134382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the first of two Special Sections on Nanopackaging. This first one has appeared in OJ-NANO Vol. 2, 2021 and the second will appear in Vol. 3, 2022. Electronics packaging is a very multidisciplinary activity requiring an understanding of Electrical, Mechanical, Materials, Thermal (and Thermomechanical) Engineering, and of the underlying Physics and Chemistry. The papers in these two Special sections will reflect this diversity, and the application of modern mathematical algorithms and computational techniques to advance the engineering design techniques. Nanopackaging could refer to the packaging of possibly disruptive nanoelectronics technologies, and this would undoubtedly be a challenging and useful field, but so far, the term has been applied more to the application of nanotechnologies to microelectronics packaging. Although this is the case with some of the papers in this collection, two are particularly driven by the packaging needs of the continuation of Moore’s Law into advanced nanoscales.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"2 \",\"pages\":\"201-202\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782713/9316416/09662658.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9662658/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9662658/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

这是关于纳米包装的两个特别部分中的第一部分。第一个已出现在OJ-NANO第2卷,2021年,第二个将出现在第3卷,2022年。电子封装是一个非常多学科的活动,需要了解电气,机械,材料,热(和热机械)工程,以及基础的物理和化学。这两个特别部分的论文将反映这种多样性,以及现代数学算法和计算技术的应用,以推进工程设计技术。纳米封装可以指可能具有破坏性的纳米电子技术的封装,这无疑是一个具有挑战性和有用的领域,但到目前为止,这个术语更多地应用于纳米技术在微电子封装中的应用。虽然本合集中的一些论文是这种情况,但有两篇论文是由摩尔定律延续到先进纳米尺度的包装需求特别驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guest Editorial: Nanopackaging Part I
This is the first of two Special Sections on Nanopackaging. This first one has appeared in OJ-NANO Vol. 2, 2021 and the second will appear in Vol. 3, 2022. Electronics packaging is a very multidisciplinary activity requiring an understanding of Electrical, Mechanical, Materials, Thermal (and Thermomechanical) Engineering, and of the underlying Physics and Chemistry. The papers in these two Special sections will reflect this diversity, and the application of modern mathematical algorithms and computational techniques to advance the engineering design techniques. Nanopackaging could refer to the packaging of possibly disruptive nanoelectronics technologies, and this would undoubtedly be a challenging and useful field, but so far, the term has been applied more to the application of nanotechnologies to microelectronics packaging. Although this is the case with some of the papers in this collection, two are particularly driven by the packaging needs of the continuation of Moore’s Law into advanced nanoscales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1