Amin Forootan , Robert Sjöback , Jens Björkman , Björn Sjögreen , Lucas Linz , Mikael Kubista
{"title":"实时荧光定量PCR (qPCR)检测限和定量限的确定方法","authors":"Amin Forootan , Robert Sjöback , Jens Björkman , Björn Sjögreen , Lucas Linz , Mikael Kubista","doi":"10.1016/j.bdq.2017.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the limit of detection (LoD) and the limit of quantification (LoQ) as applicable to qPCR. These are based on standard statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel approach to estimate the precision of LoD.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"12 ","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2017.04.001","citationCount":"346","resultStr":"{\"title\":\"Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR)\",\"authors\":\"Amin Forootan , Robert Sjöback , Jens Björkman , Björn Sjögreen , Lucas Linz , Mikael Kubista\",\"doi\":\"10.1016/j.bdq.2017.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the limit of detection (LoD) and the limit of quantification (LoQ) as applicable to qPCR. These are based on standard statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel approach to estimate the precision of LoD.</p></div>\",\"PeriodicalId\":38073,\"journal\":{\"name\":\"Biomolecular Detection and Quantification\",\"volume\":\"12 \",\"pages\":\"Pages 1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bdq.2017.04.001\",\"citationCount\":\"346\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Detection and Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214753516300286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753516300286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR)
Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the limit of detection (LoD) and the limit of quantification (LoQ) as applicable to qPCR. These are based on standard statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel approach to estimate the precision of LoD.