急慢性 DNA 损伤导致氧化磷酸化增加

IF 4.1 Q2 GERIATRICS & GERONTOLOGY npj aging Pub Date : 2016-10-13 DOI:10.1038/npjamd.2016.22
Lear E Brace, Sarah C Vose, Kristopher Stanya, Rose M Gathungu, Vasant R Marur, Alban Longchamp, Humberto Treviño-Villarreal, Pedro Mejia, Dorathy Vargas, Karen Inouye, Roderick T Bronson, Chih-Hao Lee, Edward Neilan, Bruce S Kristal, James R Mitchell
{"title":"急慢性 DNA 损伤导致氧化磷酸化增加","authors":"Lear E Brace, Sarah C Vose, Kristopher Stanya, Rose M Gathungu, Vasant R Marur, Alban Longchamp, Humberto Treviño-Villarreal, Pedro Mejia, Dorathy Vargas, Karen Inouye, Roderick T Bronson, Chih-Hao Lee, Edward Neilan, Bruce S Kristal, James R Mitchell","doi":"10.1038/npjamd.2016.22","DOIUrl":null,"url":null,"abstract":"Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. A link between DNA damage and cellular metabolism could benefit patients with premature aging disorders and lead to safer cancer treatments. Cells consume considerable energy to repair the destructive effects of chemicals, radiation and aging on the chromosomes. Researchers led by James Mitchell of the Harvard T.H. Chan School of Public Health have found that the damage-induced activation of these pathways accelerates fat metabolism and boosts production of ATP, the cell’s energetic currency. This metabolic shift is beneficial for cellular health, and appears to be an important defense mechanism in premature aging disorders like Cockayne syndrome. The researchers hypothesize that interventions such as dietary restriction could help protect against the side effects of DNA damage from radio- or chemotherapy by switching cellular energy metabolism into a more efficient state.","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"2 1","pages":"1-11"},"PeriodicalIF":4.1000,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/npjamd.2016.22","citationCount":"62","resultStr":"{\"title\":\"Increased oxidative phosphorylation in response to acute and chronic DNA damage\",\"authors\":\"Lear E Brace, Sarah C Vose, Kristopher Stanya, Rose M Gathungu, Vasant R Marur, Alban Longchamp, Humberto Treviño-Villarreal, Pedro Mejia, Dorathy Vargas, Karen Inouye, Roderick T Bronson, Chih-Hao Lee, Edward Neilan, Bruce S Kristal, James R Mitchell\",\"doi\":\"10.1038/npjamd.2016.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. A link between DNA damage and cellular metabolism could benefit patients with premature aging disorders and lead to safer cancer treatments. Cells consume considerable energy to repair the destructive effects of chemicals, radiation and aging on the chromosomes. Researchers led by James Mitchell of the Harvard T.H. Chan School of Public Health have found that the damage-induced activation of these pathways accelerates fat metabolism and boosts production of ATP, the cell’s energetic currency. This metabolic shift is beneficial for cellular health, and appears to be an important defense mechanism in premature aging disorders like Cockayne syndrome. The researchers hypothesize that interventions such as dietary restriction could help protect against the side effects of DNA damage from radio- or chemotherapy by switching cellular energy metabolism into a more efficient state.\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"2 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2016-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/npjamd.2016.22\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/npjamd201622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/npjamd201622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 62

摘要

DNA 损伤的累积与衰老、衰老相关疾病和类早衰综合征(如科凯恩综合征(Cockayne Syndrome,CS))密切相关。内源性氧化能量代谢产生的自由基可损伤DNA,但急性或慢性DNA损伤调节细胞和/或机体能量代谢的潜力在很大程度上仍未得到探索。我们利用DNA修复缺陷的Csa-/-|Xpa-/-小鼠CS模型来模拟慢性内源性基因毒性应激。外源性基因毒性应激模型是在小鼠体内和原代细胞体外用不同的基因毒性物质(包括紫外线辐射、链内交联剂和电离辐射)处理后产生的。慢性内源性和急性外源性基因毒性应激都会在机体水平上增加线粒体脂肪酸氧化(FAO),表现为耗氧量增加、呼吸交换比降低、脂肪逐渐流失以及体外组织中的 FAO 增加。在多种原代细胞类型中,对不同基因毒素的新陈代谢反应表现为细胞自主的氧化磷酸化(OXPHOS)增加,随后稳态 NAD+ 和 ATP 水平短暂下降,并且需要 DNA 损伤传感器 PARP-1 和能量感应激酶 AMPK。我们的结论是,FAO/OXPHOS 的增加是细胞和机体对 DNA 损伤的一种普遍、有益的适应性反应,说明了 DNA 损伤的能量成本所驱动的基因毒性应激与能量代谢之间的基本联系。我们的研究为减轻 DNA 损伤对放疗/化疗或类风湿综合征原代细胞的有害影响提供了治疗机会。DNA损伤与细胞新陈代谢之间的联系可使早衰症患者受益,并带来更安全的癌症治疗方法。细胞需要消耗大量能量来修复化学物质、辐射和衰老对染色体造成的破坏性影响。哈佛大学陈德熙公共卫生学院的詹姆斯-米切尔领导的研究人员发现,这些通路的损伤诱导激活会加速脂肪代谢,促进细胞的能量货币--ATP 的产生。这种新陈代谢的转变有利于细胞健康,似乎也是科凯恩综合征等早衰疾病的重要防御机制。研究人员推测,通过将细胞能量代谢转换到更有效的状态,饮食限制等干预措施有助于防止放疗或化疗造成的 DNA 损伤的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increased oxidative phosphorylation in response to acute and chronic DNA damage
Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. A link between DNA damage and cellular metabolism could benefit patients with premature aging disorders and lead to safer cancer treatments. Cells consume considerable energy to repair the destructive effects of chemicals, radiation and aging on the chromosomes. Researchers led by James Mitchell of the Harvard T.H. Chan School of Public Health have found that the damage-induced activation of these pathways accelerates fat metabolism and boosts production of ATP, the cell’s energetic currency. This metabolic shift is beneficial for cellular health, and appears to be an important defense mechanism in premature aging disorders like Cockayne syndrome. The researchers hypothesize that interventions such as dietary restriction could help protect against the side effects of DNA damage from radio- or chemotherapy by switching cellular energy metabolism into a more efficient state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
期刊最新文献
Multimorbidity is associated with myocardial DNA damage, nucleolar stress, dysregulated energy metabolism, and senescence in cardiovascular disease. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. Association between gut microbiota and locomotive syndrome risk in healthy Japanese adults: a cross-sectional study. Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study. Aging modulates the impact of cognitive interference subtypes on dynamic connectivity across a distributed motor network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1