微流体辅助TIRF成像研究单个肌动蛋白丝动力学

Q3 Biochemistry, Genetics and Molecular Biology Current Protocols in Cell Biology Pub Date : 2018-02-13 DOI:10.1002/cpcb.31
Shashank Shekhar
{"title":"微流体辅助TIRF成像研究单个肌动蛋白丝动力学","authors":"Shashank Shekhar","doi":"10.1002/cpcb.31","DOIUrl":null,"url":null,"abstract":"<p>Dynamic assembly of actin filaments is essential for many cellular processes. The rates of assembly and disassembly of actin filaments are intricately controlled by regulatory proteins that interact with the ends and the sides of filaments and with actin monomers. TIRF-based single-filament imaging techniques have proven instrumental in uncovering mechanisms of actin regulation. In this unit, novel single-filament approaches using microfluidics-assisted TIRF imaging are described. These methods can be used to grow anchored actin filaments aligned in a flow, thus making the analysis much easier as compared to open flow cell approaches. The microfluidic nature of the system also enables rapid change of biochemical conditions and allows simultaneous imaging of a large number of actin filaments. Support protocols for preparing microfluidic chambers and purifying spectrin-actin seeds used for nucleating anchored filaments are also described. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40051,"journal":{"name":"Current Protocols in Cell Biology","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcb.31","citationCount":"15","resultStr":"{\"title\":\"Microfluidics-Assisted TIRF Imaging to Study Single Actin Filament Dynamics\",\"authors\":\"Shashank Shekhar\",\"doi\":\"10.1002/cpcb.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic assembly of actin filaments is essential for many cellular processes. The rates of assembly and disassembly of actin filaments are intricately controlled by regulatory proteins that interact with the ends and the sides of filaments and with actin monomers. TIRF-based single-filament imaging techniques have proven instrumental in uncovering mechanisms of actin regulation. In this unit, novel single-filament approaches using microfluidics-assisted TIRF imaging are described. These methods can be used to grow anchored actin filaments aligned in a flow, thus making the analysis much easier as compared to open flow cell approaches. The microfluidic nature of the system also enables rapid change of biochemical conditions and allows simultaneous imaging of a large number of actin filaments. Support protocols for preparing microfluidic chambers and purifying spectrin-actin seeds used for nucleating anchored filaments are also described. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":40051,\"journal\":{\"name\":\"Current Protocols in Cell Biology\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcb.31\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 15

摘要

肌动蛋白丝的动态组装对许多细胞过程至关重要。肌动蛋白丝的组装和拆卸速率受到与丝的末端和侧面以及肌动蛋白单体相互作用的调节蛋白的复杂控制。基于红外光谱的单丝成像技术已被证明有助于揭示肌动蛋白调节的机制。在本单元中,描述了使用微流体辅助TIRF成像的新型单灯丝方法。这些方法可用于培养固定的肌动蛋白丝,使其在流动中排列,从而使分析比开放流动细胞方法容易得多。该系统的微流控特性还可以快速改变生化条件,并允许同时对大量肌动蛋白丝进行成像。还描述了制备微流体室和纯化用于成核锚定细丝的谱蛋白-肌动蛋白种子的支持协议。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidics-Assisted TIRF Imaging to Study Single Actin Filament Dynamics

Dynamic assembly of actin filaments is essential for many cellular processes. The rates of assembly and disassembly of actin filaments are intricately controlled by regulatory proteins that interact with the ends and the sides of filaments and with actin monomers. TIRF-based single-filament imaging techniques have proven instrumental in uncovering mechanisms of actin regulation. In this unit, novel single-filament approaches using microfluidics-assisted TIRF imaging are described. These methods can be used to grow anchored actin filaments aligned in a flow, thus making the analysis much easier as compared to open flow cell approaches. The microfluidic nature of the system also enables rapid change of biochemical conditions and allows simultaneous imaging of a large number of actin filaments. Support protocols for preparing microfluidic chambers and purifying spectrin-actin seeds used for nucleating anchored filaments are also described. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Cell Biology
Current Protocols in Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Developed by leading scientists in the field, Current Protocols in Cell Biology is an essential reference for researchers who study the relationship between specific molecules and genes and their location, function and structure at the cellular level. Updated every three months in all formats, CPCB is constantly evolving to keep pace with the very latest discoveries and developments.
期刊最新文献
Issue Information Measuring Mitochondrial Respiration in Previously Frozen Biological Samples Proximity Ligation Assay for Detecting Protein-Protein Interactions and Protein Modifications in Cells and Tissues in Situ Methods for Investigating Corneal Cell Interactions and Extracellular Vesicles In Vitro Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1