{"title":"解旋酶作为转录终止因子:一个共同问题的不同解决方案。","authors":"Zhong Han, Odil Porrua","doi":"10.1080/21541264.2017.1361503","DOIUrl":null,"url":null,"abstract":"<p><p>Helicases are enzymes that remodel nucleic acids or protein-nucleic acid complexes in an ATP-dependent manner. They are ubiquitous and can play many diverse functions related to the metabolism of nucleic acids. A few helicases from both the prokaryotic and the eukaryotic worlds have the ability to induce transcription termination. Here we discuss how the same biological function is achieved by different helicases with quite divergent structures and mechanisms of action.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"9 3","pages":"152-158"},"PeriodicalIF":3.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2017.1361503","citationCount":"2","resultStr":"{\"title\":\"Helicases as transcription termination factors: Different solutions for a common problem.\",\"authors\":\"Zhong Han, Odil Porrua\",\"doi\":\"10.1080/21541264.2017.1361503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Helicases are enzymes that remodel nucleic acids or protein-nucleic acid complexes in an ATP-dependent manner. They are ubiquitous and can play many diverse functions related to the metabolism of nucleic acids. A few helicases from both the prokaryotic and the eukaryotic worlds have the ability to induce transcription termination. Here we discuss how the same biological function is achieved by different helicases with quite divergent structures and mechanisms of action.</p>\",\"PeriodicalId\":47009,\"journal\":{\"name\":\"Transcription-Austin\",\"volume\":\"9 3\",\"pages\":\"152-158\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21541264.2017.1361503\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transcription-Austin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541264.2017.1361503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2017.1361503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Helicases as transcription termination factors: Different solutions for a common problem.
Helicases are enzymes that remodel nucleic acids or protein-nucleic acid complexes in an ATP-dependent manner. They are ubiquitous and can play many diverse functions related to the metabolism of nucleic acids. A few helicases from both the prokaryotic and the eukaryotic worlds have the ability to induce transcription termination. Here we discuss how the same biological function is achieved by different helicases with quite divergent structures and mechanisms of action.