压缩感知动态增强乳房MRI中时间正则化的定量评价。

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2017-01-01 Epub Date: 2017-08-28 DOI:10.1155/2017/7835749
Dong Wang, Lori R Arlinghaus, Thomas E Yankeelov, Xiaoping Yang, David S Smith
{"title":"压缩感知动态增强乳房MRI中时间正则化的定量评价。","authors":"Dong Wang,&nbsp;Lori R Arlinghaus,&nbsp;Thomas E Yankeelov,&nbsp;Xiaoping Yang,&nbsp;David S Smith","doi":"10.1155/2017/7835749","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled <i>k</i>-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast.</p><p><strong>Methods: </strong>We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGV <sub><i>α</i></sub><sup>2</sup>), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters <i>K</i><sup>trans</sup> (volume transfer constant) and <i>v</i><sub><i>e</i></sub> (extravascular-extracellular volume fraction) across a population of random sampling schemes.</p><p><strong>Results: </strong>NN produced the lowest image error (SER: 29.1), while TV/TGV <sub><i>α</i></sub><sup>2</sup> produced the most accurate <i>K</i><sup>trans</sup> (CCC: 0.974/0.974) and <i>v</i><sub><i>e</i></sub> (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate <i>K</i><sup>trans</sup> (CCC: 0.842) and <i>v</i><sub>e</sub> (CCC: 0.799).</p><p><strong>Conclusion: </strong>TV/TGV <sub><i>α</i></sub><sup>2</sup> should be used as temporal constraints for CS DCE-MRI of the breast.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7835749","citationCount":"8","resultStr":"{\"title\":\"Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast.\",\"authors\":\"Dong Wang,&nbsp;Lori R Arlinghaus,&nbsp;Thomas E Yankeelov,&nbsp;Xiaoping Yang,&nbsp;David S Smith\",\"doi\":\"10.1155/2017/7835749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled <i>k</i>-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast.</p><p><strong>Methods: </strong>We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGV <sub><i>α</i></sub><sup>2</sup>), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters <i>K</i><sup>trans</sup> (volume transfer constant) and <i>v</i><sub><i>e</i></sub> (extravascular-extracellular volume fraction) across a population of random sampling schemes.</p><p><strong>Results: </strong>NN produced the lowest image error (SER: 29.1), while TV/TGV <sub><i>α</i></sub><sup>2</sup> produced the most accurate <i>K</i><sup>trans</sup> (CCC: 0.974/0.974) and <i>v</i><sub><i>e</i></sub> (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate <i>K</i><sup>trans</sup> (CCC: 0.842) and <i>v</i><sub>e</sub> (CCC: 0.799).</p><p><strong>Conclusion: </strong>TV/TGV <sub><i>α</i></sub><sup>2</sup> should be used as temporal constraints for CS DCE-MRI of the breast.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/7835749\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/7835749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/7835749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 8

摘要

目的:动态对比增强磁共振成像(DCE-MRI)用于癌症成像,探测肿瘤血管特性。压缩感知(CS)理论使得使用非线性恢复方案从随机欠采样k空间数据中恢复MR图像成为可能。本文的目的是定量评估乳腺CS dce mri常见的时间稀疏性促进正则化器。方法:我们对4.5倍回顾性欠采样笛卡尔体内乳腺DCE-MRI数据考虑了五种普遍存在的时间正则化:傅里叶变换(FT)、哈尔小波变换(WT)、总变分(TV)、二阶总广义变分(TGV α2)和核范数(NN)。我们测量了重建图像的信错比(SER),肿瘤平均值的误差,以及衍生的药代动力学参数Ktrans(体积传递常数)和ve(血管外-细胞外体积分数)的一致性相关系数(CCCs)。结果:NN产生的图像误差最低(SER: 29.1), TV/TGV α2产生的Ktrans (CCC: 0.974/0.974)和ve (CCC: 0.916/0.917)最准确。WT产生的图像误差最高(SER: 21.8), FT产生的Ktrans (CCC: 0.842)和ve (CCC: 0.799)精度最低。结论:TV/TGV α2可作为乳腺CS - dce的时间约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast.

Purpose: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled k-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast.

Methods: We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGV α2), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters Ktrans (volume transfer constant) and ve (extravascular-extracellular volume fraction) across a population of random sampling schemes.

Results: NN produced the lowest image error (SER: 29.1), while TV/TGV α2 produced the most accurate Ktrans (CCC: 0.974/0.974) and ve (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate Ktrans (CCC: 0.842) and ve (CCC: 0.799).

Conclusion: TV/TGV α2 should be used as temporal constraints for CS DCE-MRI of the breast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1