人类着丝粒基因组研究的前景与挑战。

Karen H Miga
{"title":"人类着丝粒基因组研究的前景与挑战。","authors":"Karen H Miga","doi":"10.1007/978-3-319-58592-5_12","DOIUrl":null,"url":null,"abstract":"<p><p>Human centromeres are genomic regions that act as sites of kinetochore assembly to ensure proper chromosome segregation during mitosis and meiosis. Although the biological importance of centromeres in genome stability, and ultimately, cell viability are well understood, the complete sequence content and organization in these multi-megabase-sized regions remains unknown. The lack of a high-resolution reference assembly inhibits standard bioinformatics protocols, and as a result, sequence-based studies involving human centromeres lag far behind the advances made for the non-repetitive sequences in the human genome. In this chapter, I introduce what is known about the genomic organization in the highly repetitive regions spanning human centromeres, and discuss the challenges these sequences pose for assembly, alignment, and data interpretation. Overcoming these obstacles is expected to issue a new era for centromere genomics, which will offer new discoveries in basic cell biology and human biomedical research.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_12","citationCount":"15","resultStr":"{\"title\":\"The Promises and Challenges of Genomic Studies of Human Centromeres.\",\"authors\":\"Karen H Miga\",\"doi\":\"10.1007/978-3-319-58592-5_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human centromeres are genomic regions that act as sites of kinetochore assembly to ensure proper chromosome segregation during mitosis and meiosis. Although the biological importance of centromeres in genome stability, and ultimately, cell viability are well understood, the complete sequence content and organization in these multi-megabase-sized regions remains unknown. The lack of a high-resolution reference assembly inhibits standard bioinformatics protocols, and as a result, sequence-based studies involving human centromeres lag far behind the advances made for the non-repetitive sequences in the human genome. In this chapter, I introduce what is known about the genomic organization in the highly repetitive regions spanning human centromeres, and discuss the challenges these sequences pose for assembly, alignment, and data interpretation. Overcoming these obstacles is expected to issue a new era for centromere genomics, which will offer new discoveries in basic cell biology and human biomedical research.</p>\",\"PeriodicalId\":20880,\"journal\":{\"name\":\"Progress in molecular and subcellular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_12\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular and subcellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-58592-5_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-58592-5_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 15

摘要

人类着丝粒是基因组区域,在有丝分裂和减数分裂过程中充当着丝粒组装的位置,以确保正确的染色体分离。虽然着丝粒在基因组稳定性和最终细胞活力方面的生物学重要性已经被很好地理解,但在这些兆酶大小的区域中完整的序列内容和组织仍然未知。由于缺乏高分辨率的参考组合,标准的生物信息学方案受到限制,因此,涉及人类着丝粒的基于序列的研究远远落后于人类基因组中非重复序列的进展。在本章中,我介绍了人类着丝粒高度重复区域的基因组组织,并讨论了这些序列对组装、比对和数据解释的挑战。克服这些障碍有望开启着丝粒基因组学的新时代,这将为基础细胞生物学和人类生物医学研究提供新的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Promises and Challenges of Genomic Studies of Human Centromeres.

Human centromeres are genomic regions that act as sites of kinetochore assembly to ensure proper chromosome segregation during mitosis and meiosis. Although the biological importance of centromeres in genome stability, and ultimately, cell viability are well understood, the complete sequence content and organization in these multi-megabase-sized regions remains unknown. The lack of a high-resolution reference assembly inhibits standard bioinformatics protocols, and as a result, sequence-based studies involving human centromeres lag far behind the advances made for the non-repetitive sequences in the human genome. In this chapter, I introduce what is known about the genomic organization in the highly repetitive regions spanning human centromeres, and discuss the challenges these sequences pose for assembly, alignment, and data interpretation. Overcoming these obstacles is expected to issue a new era for centromere genomics, which will offer new discoveries in basic cell biology and human biomedical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
期刊最新文献
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1