通过成对依赖压缩表格数据。

Proceedings. Data Compression Conference Pub Date : 2017-04-01 Epub Date: 2017-05-11 DOI:10.1109/DCC.2017.82
Dmitri S Pavlichin, Amir Ingber, Tsachy Weissman
{"title":"通过成对依赖压缩表格数据。","authors":"Dmitri S Pavlichin, Amir Ingber, Tsachy Weissman","doi":"10.1109/DCC.2017.82","DOIUrl":null,"url":null,"abstract":"We propose a method and algorithm for lossless compression of tabular data – including, for example, machine learning datasets, server logs and genomic datasets. Superior compression ratios are achieved by exploiting dependencies between the fields (or \"features\") in the dataset. The algorithm compresses the records w.r.t. a probabilistic graphical model – specifically an optimized forest, where each feature is a node. The work extends a method known as a Chow-Liu tree by incorporating a more accurate correction term to the cost function, which corresponds to the size required to describe the model itself. Additional features of the algorithm are efficient coding of the metadata (such as probability distributions), as well as data relabeling in order to cope with large datasets and alphabets. We test the algorithm on several datasets, and demonstrate an improvement in the compression rates of between 2X and 5X compared to gzip. The larger improvements are observed for very large datasets, such as the Criteo click prediction dataset which was published as part of a recent Kaggle competition.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"2017 ","pages":"455"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/DCC.2017.82","citationCount":"1","resultStr":"{\"title\":\"Compressing Tabular Data via Pairwise Dependencies.\",\"authors\":\"Dmitri S Pavlichin, Amir Ingber, Tsachy Weissman\",\"doi\":\"10.1109/DCC.2017.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method and algorithm for lossless compression of tabular data – including, for example, machine learning datasets, server logs and genomic datasets. Superior compression ratios are achieved by exploiting dependencies between the fields (or \\\"features\\\") in the dataset. The algorithm compresses the records w.r.t. a probabilistic graphical model – specifically an optimized forest, where each feature is a node. The work extends a method known as a Chow-Liu tree by incorporating a more accurate correction term to the cost function, which corresponds to the size required to describe the model itself. Additional features of the algorithm are efficient coding of the metadata (such as probability distributions), as well as data relabeling in order to cope with large datasets and alphabets. We test the algorithm on several datasets, and demonstrate an improvement in the compression rates of between 2X and 5X compared to gzip. The larger improvements are observed for very large datasets, such as the Criteo click prediction dataset which was published as part of a recent Kaggle competition.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"2017 \",\"pages\":\"455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/DCC.2017.82\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2017.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2017.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressing Tabular Data via Pairwise Dependencies.
We propose a method and algorithm for lossless compression of tabular data – including, for example, machine learning datasets, server logs and genomic datasets. Superior compression ratios are achieved by exploiting dependencies between the fields (or "features") in the dataset. The algorithm compresses the records w.r.t. a probabilistic graphical model – specifically an optimized forest, where each feature is a node. The work extends a method known as a Chow-Liu tree by incorporating a more accurate correction term to the cost function, which corresponds to the size required to describe the model itself. Additional features of the algorithm are efficient coding of the metadata (such as probability distributions), as well as data relabeling in order to cope with large datasets and alphabets. We test the algorithm on several datasets, and demonstrate an improvement in the compression rates of between 2X and 5X compared to gzip. The larger improvements are observed for very large datasets, such as the Criteo click prediction dataset which was published as part of a recent Kaggle competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster Maximal Exact Matches with Lazy LCP Evaluation. Recursive Prefix-Free Parsing for Building Big BWTs. PHONI: Streamed Matching Statistics with Multi-Genome References. Client-Driven Transmission of JPEG2000 Image Sequences Using Motion Compensated Conditional Replenishment GeneComp, a new reference-based compressor for SAM files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1