Abhishek Bakuli, Frank Klawonn, André Karch, Rafael Mikolajczyk
{"title":"包括种群异质性在内的多病原体传染病系统中病原体依赖效应的模拟研究。","authors":"Abhishek Bakuli, Frank Klawonn, André Karch, Rafael Mikolajczyk","doi":"10.1186/s12976-017-0072-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.</p><p><strong>Methods: </strong>With the help of simulations from such a system, we observed the behaviour of the epidemics in different scenarios. The scenarios included different household size distributions, dependency versus independency of pathogens, and also the degree of dependency expressed through household isolation during symptomatic phase of individuals. Generalized additive models were used to model the association between the epidemiological parameters of interest on the variation in the parameter values from the simulation data. All the simulations and statistical analyses were performed using R 3.4.0.</p><p><strong>Results: </strong>We demonstrated the importance of considering pathogen dependency using two pathogens, and showing the difference when considered independent versus dependent. Additionally for the general scenario with more pathogens, the assumption of dependency among pathogens and the household size distribution in the population cohort was found to be effective in containing the epidemic process. Additionally, populations with larger household sizes reached the epidemic peak faster than societies with smaller household sizes but dependencies among pathogens did not affect this outcome significantly. Larger households had more infections in all population cohort examples considered in our simulations. Increase in household isolation coefficient for pathogen dependency also could control the epidemic process.</p><p><strong>Conclusion: </strong>Presence of multiple pathogens and their interaction can impact the behaviour of an epidemic across cohorts with different household size distributions. Future household cohort studies identifying multiple pathogens will provide useful data to verify the interaction processes in such an infectious disease system.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-017-0072-7","citationCount":"5","resultStr":"{\"title\":\"Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.\",\"authors\":\"Abhishek Bakuli, Frank Klawonn, André Karch, Rafael Mikolajczyk\",\"doi\":\"10.1186/s12976-017-0072-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.</p><p><strong>Methods: </strong>With the help of simulations from such a system, we observed the behaviour of the epidemics in different scenarios. The scenarios included different household size distributions, dependency versus independency of pathogens, and also the degree of dependency expressed through household isolation during symptomatic phase of individuals. Generalized additive models were used to model the association between the epidemiological parameters of interest on the variation in the parameter values from the simulation data. All the simulations and statistical analyses were performed using R 3.4.0.</p><p><strong>Results: </strong>We demonstrated the importance of considering pathogen dependency using two pathogens, and showing the difference when considered independent versus dependent. Additionally for the general scenario with more pathogens, the assumption of dependency among pathogens and the household size distribution in the population cohort was found to be effective in containing the epidemic process. Additionally, populations with larger household sizes reached the epidemic peak faster than societies with smaller household sizes but dependencies among pathogens did not affect this outcome significantly. Larger households had more infections in all population cohort examples considered in our simulations. Increase in household isolation coefficient for pathogen dependency also could control the epidemic process.</p><p><strong>Conclusion: </strong>Presence of multiple pathogens and their interaction can impact the behaviour of an epidemic across cohorts with different household size distributions. Future household cohort studies identifying multiple pathogens will provide useful data to verify the interaction processes in such an infectious disease system.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12976-017-0072-7\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12976-017-0072-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-017-0072-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.
Background: Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.
Methods: With the help of simulations from such a system, we observed the behaviour of the epidemics in different scenarios. The scenarios included different household size distributions, dependency versus independency of pathogens, and also the degree of dependency expressed through household isolation during symptomatic phase of individuals. Generalized additive models were used to model the association between the epidemiological parameters of interest on the variation in the parameter values from the simulation data. All the simulations and statistical analyses were performed using R 3.4.0.
Results: We demonstrated the importance of considering pathogen dependency using two pathogens, and showing the difference when considered independent versus dependent. Additionally for the general scenario with more pathogens, the assumption of dependency among pathogens and the household size distribution in the population cohort was found to be effective in containing the epidemic process. Additionally, populations with larger household sizes reached the epidemic peak faster than societies with smaller household sizes but dependencies among pathogens did not affect this outcome significantly. Larger households had more infections in all population cohort examples considered in our simulations. Increase in household isolation coefficient for pathogen dependency also could control the epidemic process.
Conclusion: Presence of multiple pathogens and their interaction can impact the behaviour of an epidemic across cohorts with different household size distributions. Future household cohort studies identifying multiple pathogens will provide useful data to verify the interaction processes in such an infectious disease system.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.