M A Gladchenko, D A Kovalev, Yu V Litti, A N Nozhevnikova
{"title":"[蔬菜加工设备有机废弃物厌氧消化产生甲烷]。","authors":"M A Gladchenko, D A Kovalev, Yu V Litti, A N Nozhevnikova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The article concerns converting waste from vegetable processing facilities into methane in anaerobic reactors with a small amount of inoculum (8.4%). Anaerobic digestion of vegetable waste with a high content of organic acids and carbohydrates makes it possible to achieve a methanogenesis productivity of 273–436 L CH4/kg of volatile solidis, which is comparable to or higher than the productivity of such reactors in the world (according to the literature). The contents of ammonia nitrogen and soluble phosphorus in the form of on undiluted substrate basis in the digested vegetable wastes ranged from 3.39 to 5.06 and from 0.78 to 1.03 g/L respectively. Thus, mineralized vegetable waste can be used as an organic fertilizer with a high nutrient content. The results show the feasibility of the technology of conversion of organic waste from vegetable processing facilities into methane and organic fertilizer in anaerobic fermenters (digesters).</p>","PeriodicalId":20415,"journal":{"name":"Prikladnaia biokhimiia i mikrobiologiia","volume":"53 2","pages":"225-33"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Production of Methane in Anaerobic Digestion of Organic Waste of Vegetable Processing Facilities].\",\"authors\":\"M A Gladchenko, D A Kovalev, Yu V Litti, A N Nozhevnikova\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article concerns converting waste from vegetable processing facilities into methane in anaerobic reactors with a small amount of inoculum (8.4%). Anaerobic digestion of vegetable waste with a high content of organic acids and carbohydrates makes it possible to achieve a methanogenesis productivity of 273–436 L CH4/kg of volatile solidis, which is comparable to or higher than the productivity of such reactors in the world (according to the literature). The contents of ammonia nitrogen and soluble phosphorus in the form of on undiluted substrate basis in the digested vegetable wastes ranged from 3.39 to 5.06 and from 0.78 to 1.03 g/L respectively. Thus, mineralized vegetable waste can be used as an organic fertilizer with a high nutrient content. The results show the feasibility of the technology of conversion of organic waste from vegetable processing facilities into methane and organic fertilizer in anaerobic fermenters (digesters).</p>\",\"PeriodicalId\":20415,\"journal\":{\"name\":\"Prikladnaia biokhimiia i mikrobiologiia\",\"volume\":\"53 2\",\"pages\":\"225-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaia biokhimiia i mikrobiologiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaia biokhimiia i mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这篇文章涉及在厌氧反应器中用少量接种物(8.4%)将蔬菜加工设施的废物转化为甲烷。对有机酸和碳水化合物含量高的植物废弃物进行厌氧消化,可以实现273-436 L CH4/kg挥发性固体的产甲烷率,与世界上同类反应器的产甲烷率相当或更高(根据文献)。消化植物废弃物中未稀释底物形式的氨氮和可溶性磷含量分别为3.39 ~ 5.06和0.78 ~ 1.03 g/L。因此,矿化蔬菜废弃物可以作为高营养含量的有机肥。研究结果表明,利用厌氧发酵(消化)池将蔬菜加工装置产生的有机废弃物转化为甲烷和有机肥的技术是可行的。
[Production of Methane in Anaerobic Digestion of Organic Waste of Vegetable Processing Facilities].
The article concerns converting waste from vegetable processing facilities into methane in anaerobic reactors with a small amount of inoculum (8.4%). Anaerobic digestion of vegetable waste with a high content of organic acids and carbohydrates makes it possible to achieve a methanogenesis productivity of 273–436 L CH4/kg of volatile solidis, which is comparable to or higher than the productivity of such reactors in the world (according to the literature). The contents of ammonia nitrogen and soluble phosphorus in the form of on undiluted substrate basis in the digested vegetable wastes ranged from 3.39 to 5.06 and from 0.78 to 1.03 g/L respectively. Thus, mineralized vegetable waste can be used as an organic fertilizer with a high nutrient content. The results show the feasibility of the technology of conversion of organic waste from vegetable processing facilities into methane and organic fertilizer in anaerobic fermenters (digesters).