Jana Jeffery, Maria Carradus, Karolina Songin, Michael Pettit, Karl Pettit, Christopher Wright
{"title":"利用气相色谱-质谱法测定卷烟主流烟气中 16 种 FDA 多环芳烃 (PAHs) 的优化方法。","authors":"Jana Jeffery, Maria Carradus, Karolina Songin, Michael Pettit, Karl Pettit, Christopher Wright","doi":"10.1186/s13065-018-0397-2","DOIUrl":null,"url":null,"abstract":"<p><p>A gas chromatography-mass spectrometry (GC-MS) method was validated for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) from the FDA list of 93 harmful or potentially harmful constituents of mainstream cigarette smoke (MCS). Target analytes were extracted from total particulate matter using accelerated solvent extraction with a toluene/ethanol solvent mixture. Matrix artefacts were removed by two-step solid-phase extraction process. Three different GC-MS systems [GC-MS (single quadrupole), GC-MS/MS (triple quadrupole) and GC-HRMS (high resolution, magnetic sector)] using the same separation conditions were compared for the analysis of MCS of 3R4F Kentucky reference cigarettes generated under ISO and intense smoking regimes. The high mass resolution (m/∆m ≥ 10,000) and associated selectivity of detection by GC-HRMS provided the highest quality data for the target PAHs in MCS. Owing to the HR data acquisition mode enabling measurement of accurate mass, limits of quantification for PAHs were 5 to 15-fold lower for GC-HRMS than for GC-MS/MS and GC-MS. The presented study illustrates that the optimised sample preparation strategy followed by GC-HRMS analysis provides a fit-for-purpose and robust analytical approach allowing measurement of PAHs at (ultra)low concentrations in MCS. Furthermore, the study illustrates the importance and benefits of robust sample preparation and clean-up to compensate for limited selectivity when low-resolution MS is used.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimized method for determination of 16 FDA polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke by gas chromatography-mass spectrometry.\",\"authors\":\"Jana Jeffery, Maria Carradus, Karolina Songin, Michael Pettit, Karl Pettit, Christopher Wright\",\"doi\":\"10.1186/s13065-018-0397-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A gas chromatography-mass spectrometry (GC-MS) method was validated for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) from the FDA list of 93 harmful or potentially harmful constituents of mainstream cigarette smoke (MCS). Target analytes were extracted from total particulate matter using accelerated solvent extraction with a toluene/ethanol solvent mixture. Matrix artefacts were removed by two-step solid-phase extraction process. Three different GC-MS systems [GC-MS (single quadrupole), GC-MS/MS (triple quadrupole) and GC-HRMS (high resolution, magnetic sector)] using the same separation conditions were compared for the analysis of MCS of 3R4F Kentucky reference cigarettes generated under ISO and intense smoking regimes. The high mass resolution (m/∆m ≥ 10,000) and associated selectivity of detection by GC-HRMS provided the highest quality data for the target PAHs in MCS. Owing to the HR data acquisition mode enabling measurement of accurate mass, limits of quantification for PAHs were 5 to 15-fold lower for GC-HRMS than for GC-MS/MS and GC-MS. The presented study illustrates that the optimised sample preparation strategy followed by GC-HRMS analysis provides a fit-for-purpose and robust analytical approach allowing measurement of PAHs at (ultra)low concentrations in MCS. Furthermore, the study illustrates the importance and benefits of robust sample preparation and clean-up to compensate for limited selectivity when low-resolution MS is used.</p>\",\"PeriodicalId\":9842,\"journal\":{\"name\":\"Chemistry Central Journal\",\"volume\":\"12 1\",\"pages\":\"27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Central Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13065-018-0397-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0397-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Optimized method for determination of 16 FDA polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke by gas chromatography-mass spectrometry.
A gas chromatography-mass spectrometry (GC-MS) method was validated for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) from the FDA list of 93 harmful or potentially harmful constituents of mainstream cigarette smoke (MCS). Target analytes were extracted from total particulate matter using accelerated solvent extraction with a toluene/ethanol solvent mixture. Matrix artefacts were removed by two-step solid-phase extraction process. Three different GC-MS systems [GC-MS (single quadrupole), GC-MS/MS (triple quadrupole) and GC-HRMS (high resolution, magnetic sector)] using the same separation conditions were compared for the analysis of MCS of 3R4F Kentucky reference cigarettes generated under ISO and intense smoking regimes. The high mass resolution (m/∆m ≥ 10,000) and associated selectivity of detection by GC-HRMS provided the highest quality data for the target PAHs in MCS. Owing to the HR data acquisition mode enabling measurement of accurate mass, limits of quantification for PAHs were 5 to 15-fold lower for GC-HRMS than for GC-MS/MS and GC-MS. The presented study illustrates that the optimised sample preparation strategy followed by GC-HRMS analysis provides a fit-for-purpose and robust analytical approach allowing measurement of PAHs at (ultra)low concentrations in MCS. Furthermore, the study illustrates the importance and benefits of robust sample preparation and clean-up to compensate for limited selectivity when low-resolution MS is used.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry