{"title":"用一种新技术测定毛细管中正常和异常红细胞的横截面分布。","authors":"Takahiro Sasaki, Junji Seki, Tomoaki Itano, Masako Sugihara-Seki","doi":"10.3233/BIR-18166","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In the microcirculation, red blood cells (RBCs) were observed to be confined to an axial stream surrounded by a marginal RBC depleted layer. This axial accumulation of RBCs is considered to arise from the RBC deformability.</p><p><strong>Objective: </strong>To quantitatively evaluate the effect of RBC deformability on their axial accumulation at a flow condition comparable to that in arterioles by developing a new observation system for accurate measurements of radial RBC positions in the cross section of capillary tubes.</p><p><strong>Methods: </strong>The cross-sectional distributions of normal and hardened RBCs as well as softened RBCs suspended in capillary tube flows were measured with high spatial resolution. A new observation system was developed in which enface views of the cross-section of the tube were obtained at small distances upstream of the outlet at various longitudinal positions in the tube.</p><p><strong>Results: </strong>The radial positions of individual RBCs were detected within 1 μm accuracy. It was found that normal and softened RBCs rapidly migrated away from the wall towards the tube axis, whereas glutaraldehyde-hardened RBCs were dispersed widely over the tube cross-section, depending on the concentration of glutaraldehyde solution.</p><p><strong>Conclusions: </strong>The newly devised observation system revealed quantitatively the essential role of RBC deformability in their axial accumulation.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"54 5-6","pages":"153-165"},"PeriodicalIF":1.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-18166","citationCount":"2","resultStr":"{\"title\":\"Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.\",\"authors\":\"Takahiro Sasaki, Junji Seki, Tomoaki Itano, Masako Sugihara-Seki\",\"doi\":\"10.3233/BIR-18166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In the microcirculation, red blood cells (RBCs) were observed to be confined to an axial stream surrounded by a marginal RBC depleted layer. This axial accumulation of RBCs is considered to arise from the RBC deformability.</p><p><strong>Objective: </strong>To quantitatively evaluate the effect of RBC deformability on their axial accumulation at a flow condition comparable to that in arterioles by developing a new observation system for accurate measurements of radial RBC positions in the cross section of capillary tubes.</p><p><strong>Methods: </strong>The cross-sectional distributions of normal and hardened RBCs as well as softened RBCs suspended in capillary tube flows were measured with high spatial resolution. A new observation system was developed in which enface views of the cross-section of the tube were obtained at small distances upstream of the outlet at various longitudinal positions in the tube.</p><p><strong>Results: </strong>The radial positions of individual RBCs were detected within 1 μm accuracy. It was found that normal and softened RBCs rapidly migrated away from the wall towards the tube axis, whereas glutaraldehyde-hardened RBCs were dispersed widely over the tube cross-section, depending on the concentration of glutaraldehyde solution.</p><p><strong>Conclusions: </strong>The newly devised observation system revealed quantitatively the essential role of RBC deformability in their axial accumulation.</p>\",\"PeriodicalId\":9167,\"journal\":{\"name\":\"Biorheology\",\"volume\":\"54 5-6\",\"pages\":\"153-165\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BIR-18166\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biorheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BIR-18166\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-18166","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
Background: In the microcirculation, red blood cells (RBCs) were observed to be confined to an axial stream surrounded by a marginal RBC depleted layer. This axial accumulation of RBCs is considered to arise from the RBC deformability.
Objective: To quantitatively evaluate the effect of RBC deformability on their axial accumulation at a flow condition comparable to that in arterioles by developing a new observation system for accurate measurements of radial RBC positions in the cross section of capillary tubes.
Methods: The cross-sectional distributions of normal and hardened RBCs as well as softened RBCs suspended in capillary tube flows were measured with high spatial resolution. A new observation system was developed in which enface views of the cross-section of the tube were obtained at small distances upstream of the outlet at various longitudinal positions in the tube.
Results: The radial positions of individual RBCs were detected within 1 μm accuracy. It was found that normal and softened RBCs rapidly migrated away from the wall towards the tube axis, whereas glutaraldehyde-hardened RBCs were dispersed widely over the tube cross-section, depending on the concentration of glutaraldehyde solution.
Conclusions: The newly devised observation system revealed quantitatively the essential role of RBC deformability in their axial accumulation.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.