一种新的概率多图分解模型识别一致性人脑网络模块。

Dijun Luo, Zhouyuan Huo, Yang Wang, Andrew J Saykin, Li Shen, Heng Huang
{"title":"一种新的概率多图分解模型识别一致性人脑网络模块。","authors":"Dijun Luo,&nbsp;Zhouyuan Huo,&nbsp;Yang Wang,&nbsp;Andrew J Saykin,&nbsp;Li Shen,&nbsp;Heng Huang","doi":"10.1109/ICDM.2016.0041","DOIUrl":null,"url":null,"abstract":"<p><p>Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding large-scale brain networks that underlie higher-level cognition in human. However, suitable network analysis computational tools are still lacking in human brain connectivity research. To address this problem, we propose a novel probabilistic multi-graph decomposition model to identify consistent network modules from the brain connectivity networks of the studied subjects. At first, we propose a new probabilistic graph decomposition model to address the high computational complexity issue in existing stochastic block models. After that, we further extend our new probabilistic graph decomposition model for multiple networks/graphs to identify the shared modules cross multiple brain networks by simultaneously incorporating multiple networks and predicting the hidden block state variables. We also derive an efficient optimization algorithm to solve the proposed objective and estimate the model parameters. We validate our method by analyzing both the weighted fiber connectivity networks constructed from DTI images and the standard human face image clustering benchmark data sets. The promising empirical results demonstrate the superior performance of our proposed method.</p>","PeriodicalId":74565,"journal":{"name":"Proceedings. IEEE International Conference on Data Mining","volume":" ","pages":"301-310"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDM.2016.0041","citationCount":"1","resultStr":"{\"title\":\"New Probabilistic Multi-Graph Decomposition Model to Identify Consistent Human Brain Network Modules.\",\"authors\":\"Dijun Luo,&nbsp;Zhouyuan Huo,&nbsp;Yang Wang,&nbsp;Andrew J Saykin,&nbsp;Li Shen,&nbsp;Heng Huang\",\"doi\":\"10.1109/ICDM.2016.0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding large-scale brain networks that underlie higher-level cognition in human. However, suitable network analysis computational tools are still lacking in human brain connectivity research. To address this problem, we propose a novel probabilistic multi-graph decomposition model to identify consistent network modules from the brain connectivity networks of the studied subjects. At first, we propose a new probabilistic graph decomposition model to address the high computational complexity issue in existing stochastic block models. After that, we further extend our new probabilistic graph decomposition model for multiple networks/graphs to identify the shared modules cross multiple brain networks by simultaneously incorporating multiple networks and predicting the hidden block state variables. We also derive an efficient optimization algorithm to solve the proposed objective and estimate the model parameters. We validate our method by analyzing both the weighted fiber connectivity networks constructed from DTI images and the standard human face image clustering benchmark data sets. The promising empirical results demonstrate the superior performance of our proposed method.</p>\",\"PeriodicalId\":74565,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Data Mining\",\"volume\":\" \",\"pages\":\"301-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICDM.2016.0041\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2016.0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2016.0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,许多科学研究都致力于利用弥散张量成像(Diffusion Tensor Imaging, DTI)数据构建人类连接组,以了解人类高级认知基础上的大规模大脑网络。然而,在人脑连通性的研究中,仍然缺乏合适的网络分析计算工具。为了解决这一问题,我们提出了一种新的概率多图分解模型,从被研究对象的大脑连接网络中识别出一致的网络模块。首先,针对现有随机块模型计算复杂度高的问题,提出了一种新的概率图分解模型。之后,我们进一步扩展了新的多网络/图的概率图分解模型,通过同时合并多个网络和预测隐藏块状态变量来识别跨多个大脑网络的共享模块。我们还推导了一种有效的优化算法来求解所提出的目标和估计模型参数。通过分析由DTI图像构建的加权光纤连接网络和标准人脸图像聚类基准数据集,验证了我们的方法。实证结果表明,本文提出的方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Probabilistic Multi-Graph Decomposition Model to Identify Consistent Human Brain Network Modules.

Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding large-scale brain networks that underlie higher-level cognition in human. However, suitable network analysis computational tools are still lacking in human brain connectivity research. To address this problem, we propose a novel probabilistic multi-graph decomposition model to identify consistent network modules from the brain connectivity networks of the studied subjects. At first, we propose a new probabilistic graph decomposition model to address the high computational complexity issue in existing stochastic block models. After that, we further extend our new probabilistic graph decomposition model for multiple networks/graphs to identify the shared modules cross multiple brain networks by simultaneously incorporating multiple networks and predicting the hidden block state variables. We also derive an efficient optimization algorithm to solve the proposed objective and estimate the model parameters. We validate our method by analyzing both the weighted fiber connectivity networks constructed from DTI images and the standard human face image clustering benchmark data sets. The promising empirical results demonstrate the superior performance of our proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression. Heterogeneous Treatment Effect Estimation with Subpopulation Identification for Personalized Medicine in Opioid Use Disorder. RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging. Robust Unsupervised Domain Adaptation from A Corrupted Source. Communication Efficient Tensor Factorization for Decentralized Healthcare Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1