{"title":"氟苯双胺连续三代影响黑腹果蝇的视觉和运动活动(P, F1和F2)。","authors":"Saurabh Sarkar, Arnab Roy, Sumedha Roy","doi":"10.1007/s10158-018-0210-x","DOIUrl":null,"url":null,"abstract":"<p><p>Flubendiamide is widely used in agricultural fields to exterminate a broad spectrum of pests (lepidopteran insects) by disrupting their muscle function. The main objective of this study was to find the effects of flubendiamide on a non-target organism, Drosophila melanogaster (dipteran insect). In the present study, different sub-lethal concentrations of Flubendiamide caused a significant (P < 0.05) decrease in acetylcholinesterase activity and increase in cytochrome P450 activity in adult D. melanogaster. Phototaxis and climbing behaviours were found to significantly (P < 0.05) alter in exposed flies. The observed alteration in phototaxis and climbing behaviours were not restricted to P generation, but were found to be transmitted to subsequent generations (F<sub>1</sub> and F<sub>2</sub> generation) that had never been directly exposed to the test chemical during their life time. It is only their predecessors (P generation) who have been affronted with different concentrations of Flubendiamide. Humans and Drosophilids share almost 60% genomic similarity and 75% disease gene resemblance. Moreover, most of the circuits governing the behaviours studied involve the inhibition and excitation of neurotransmitters, which are conserved in humans and flies. Thus, the present findings suggest that chronic flubendiamide exposure might induce alteration in neurotransmission leading to discrepancy in the behavioural responses (vision and flight) in other beneficial insects and insect-dependent organisms.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0210-x","citationCount":"7","resultStr":"{\"title\":\"Flubendiamide affects visual and locomotory activities of Drosophila melanogaster for three successive generations (P, F<sub>1</sub> and F<sub>2</sub>).\",\"authors\":\"Saurabh Sarkar, Arnab Roy, Sumedha Roy\",\"doi\":\"10.1007/s10158-018-0210-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flubendiamide is widely used in agricultural fields to exterminate a broad spectrum of pests (lepidopteran insects) by disrupting their muscle function. The main objective of this study was to find the effects of flubendiamide on a non-target organism, Drosophila melanogaster (dipteran insect). In the present study, different sub-lethal concentrations of Flubendiamide caused a significant (P < 0.05) decrease in acetylcholinesterase activity and increase in cytochrome P450 activity in adult D. melanogaster. Phototaxis and climbing behaviours were found to significantly (P < 0.05) alter in exposed flies. The observed alteration in phototaxis and climbing behaviours were not restricted to P generation, but were found to be transmitted to subsequent generations (F<sub>1</sub> and F<sub>2</sub> generation) that had never been directly exposed to the test chemical during their life time. It is only their predecessors (P generation) who have been affronted with different concentrations of Flubendiamide. Humans and Drosophilids share almost 60% genomic similarity and 75% disease gene resemblance. Moreover, most of the circuits governing the behaviours studied involve the inhibition and excitation of neurotransmitters, which are conserved in humans and flies. Thus, the present findings suggest that chronic flubendiamide exposure might induce alteration in neurotransmission leading to discrepancy in the behavioural responses (vision and flight) in other beneficial insects and insect-dependent organisms.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"18 2\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-018-0210-x\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-018-0210-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-018-0210-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
Flubendiamide affects visual and locomotory activities of Drosophila melanogaster for three successive generations (P, F1 and F2).
Flubendiamide is widely used in agricultural fields to exterminate a broad spectrum of pests (lepidopteran insects) by disrupting their muscle function. The main objective of this study was to find the effects of flubendiamide on a non-target organism, Drosophila melanogaster (dipteran insect). In the present study, different sub-lethal concentrations of Flubendiamide caused a significant (P < 0.05) decrease in acetylcholinesterase activity and increase in cytochrome P450 activity in adult D. melanogaster. Phototaxis and climbing behaviours were found to significantly (P < 0.05) alter in exposed flies. The observed alteration in phototaxis and climbing behaviours were not restricted to P generation, but were found to be transmitted to subsequent generations (F1 and F2 generation) that had never been directly exposed to the test chemical during their life time. It is only their predecessors (P generation) who have been affronted with different concentrations of Flubendiamide. Humans and Drosophilids share almost 60% genomic similarity and 75% disease gene resemblance. Moreover, most of the circuits governing the behaviours studied involve the inhibition and excitation of neurotransmitters, which are conserved in humans and flies. Thus, the present findings suggest that chronic flubendiamide exposure might induce alteration in neurotransmission leading to discrepancy in the behavioural responses (vision and flight) in other beneficial insects and insect-dependent organisms.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.