Hyun-Wook Kim, Derico Setyabrata, Yong-Jae Lee, Yuan H Brad Kim
{"title":"碱处理甘蔗纤维对不同脂肪水平肉乳理化和质构性能的改善效果。","authors":"Hyun-Wook Kim, Derico Setyabrata, Yong-Jae Lee, Yuan H Brad Kim","doi":"10.5851/kosfa.2018.38.2.315","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH<sub>2</sub>)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (<i>p</i>=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (<i>p</i>>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.</p>","PeriodicalId":17915,"journal":{"name":"Korean Journal for Food Science of Animal Resources","volume":"38 2","pages":"315-324"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/b7/kosfa-38-2-315.PMC5960829.pdf","citationCount":"4","resultStr":"{\"title\":\"Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels.\",\"authors\":\"Hyun-Wook Kim, Derico Setyabrata, Yong-Jae Lee, Yuan H Brad Kim\",\"doi\":\"10.5851/kosfa.2018.38.2.315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH<sub>2</sub>)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (<i>p</i>=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (<i>p</i>>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.</p>\",\"PeriodicalId\":17915,\"journal\":{\"name\":\"Korean Journal for Food Science of Animal Resources\",\"volume\":\"38 2\",\"pages\":\"315-324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/b7/kosfa-38-2-315.PMC5960829.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal for Food Science of Animal Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5851/kosfa.2018.38.2.315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal for Food Science of Animal Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5851/kosfa.2018.38.2.315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels.
The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH2)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (p=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (p>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.