G蛋白偶联受体变构调节的操作模型。

药学学报 Pub Date : 2016-12-01
Hao Gong, Shuo Zhang, Richard Dequan Ye
{"title":"G蛋白偶联受体变构调节的操作模型。","authors":"Hao Gong,&nbsp;Shuo Zhang,&nbsp;Richard Dequan Ye","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Since the Monod-Wyman-Changeux (MWC) model was initially proposed to explain the allosteric interactions between proteins and their ligands 50 years ago, there have been various models and hypotheses such as the induced-fit model on the interaction. These theoretical developments have been used broadly in the study of allosteric modulations of enzymes and receptors. In 1980, Lefkowitz and coworkers proposed a ternary complex model (TCM) for the regulatory mechanism of G protein-coupled receptors (GPCRs) that laid the theoretical foundation in the study of allosteric sites and ligands of GPCRs, the largest family of known receptors. The findings on how ligands interact with receptors to cause a functional response have significantly impacted the drug discovery field and accelerated the identification of allosteric modulators.</p>","PeriodicalId":35924,"journal":{"name":"药学学报","volume":"51 12","pages":"1829-37"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Operational models of allosteric modulation of G protein-coupled receptors].\",\"authors\":\"Hao Gong,&nbsp;Shuo Zhang,&nbsp;Richard Dequan Ye\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the Monod-Wyman-Changeux (MWC) model was initially proposed to explain the allosteric interactions between proteins and their ligands 50 years ago, there have been various models and hypotheses such as the induced-fit model on the interaction. These theoretical developments have been used broadly in the study of allosteric modulations of enzymes and receptors. In 1980, Lefkowitz and coworkers proposed a ternary complex model (TCM) for the regulatory mechanism of G protein-coupled receptors (GPCRs) that laid the theoretical foundation in the study of allosteric sites and ligands of GPCRs, the largest family of known receptors. The findings on how ligands interact with receptors to cause a functional response have significantly impacted the drug discovery field and accelerated the identification of allosteric modulators.</p>\",\"PeriodicalId\":35924,\"journal\":{\"name\":\"药学学报\",\"volume\":\"51 12\",\"pages\":\"1829-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自从Monod-Wyman-Changeux (MWC)模型在50年前首次被提出来解释蛋白质与其配体之间的变构相互作用以来,已经出现了各种各样的模型和假设,如诱导拟合模型。这些理论的发展已广泛应用于酶和受体的变构调节研究。1980年,Lefkowitz等人提出了G蛋白偶联受体(gpcr)调控机制的三元复合物模型(three - complex model, TCM),为研究已知受体中最大家族gpcr的变构位点和配体奠定了理论基础。关于配体如何与受体相互作用以引起功能性反应的研究结果对药物发现领域产生了重大影响,并加速了变构调节剂的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Operational models of allosteric modulation of G protein-coupled receptors].

Since the Monod-Wyman-Changeux (MWC) model was initially proposed to explain the allosteric interactions between proteins and their ligands 50 years ago, there have been various models and hypotheses such as the induced-fit model on the interaction. These theoretical developments have been used broadly in the study of allosteric modulations of enzymes and receptors. In 1980, Lefkowitz and coworkers proposed a ternary complex model (TCM) for the regulatory mechanism of G protein-coupled receptors (GPCRs) that laid the theoretical foundation in the study of allosteric sites and ligands of GPCRs, the largest family of known receptors. The findings on how ligands interact with receptors to cause a functional response have significantly impacted the drug discovery field and accelerated the identification of allosteric modulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
药学学报
药学学报 Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Acta Pharmaceutica Sinica B (APSB) is a bimonthly English peer-reviewed online journal in ScienceDirect, which publishes significant original research articles, communications and high quality reviews of recent advances. APSB encourages submissions from all areas of pharmaceutical sciences, including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics. APSB is a part of the series Acta Pharmaceutica Sinica, which was founded in 1953. The journal is co-published by Elsevier B.V., in association with the Institute of MateriaMedica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
期刊最新文献
[Protection effects of schizandrin B against liver injury induced by clozapine in mice]. [Effect of apigenin on dendritic cells maturation and function in murine splenocytes]. [Advances and challenges in preclinical evaluation of therapeutic drugs for treating ischemic stroke]. [Advances in the study of the rat model of aging induced by D-galactose] [Current status of ion channels as drug targets for diabetic neuropathic pain].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1