Meng-liang Wang, Ya-nan Wang, Jin-long Cui, Jun-hong Wang
{"title":"[内生真菌对红景天红景天苷生物合成途径关键酶基因表达的影响]。","authors":"Meng-liang Wang, Ya-nan Wang, Jin-long Cui, Jun-hong Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>One strain of endophytic fungus ZPRa-R-1 was obtained for the capacity of promoting production of salidroside in Rhodiola crenulata. To explain the mechanism of salidroside biosynthesis in host plant, eight housekeeping genes were evaluated, and the evaluation method was created for the expression activities of four key enzyme genes PAL (phenylalanine ammonia-lyase), TyDC (tyrosine decarboxylase), TAT (tyrosine transaminase), UDPGT (UDP-glucosyltransferase) referenced double reference genes in biosynthesis pathway of salidroside in R. crenulata. Stabilities of housekeeping genes were confirmed by real-time fluorescent quantitative PCR technology and three softwares including geNorm, NormFinder and BestKeeper, then relative expressions of key enzyme genes were analysized by the 2-ΔΔCt method. The results showed that the most stable gene was GAPDH, followed by PCS, and the most appropriate reference of internal genes were combination with two genes in R. crenulata inoculated with endophytic fungus ZPRa-R-1. Under symbiosis conditions, regularity changes of key enzyme genes affected by endophytic fungus ZPRa-R-1 were as follows: the relative expression activity of PAL attached to peak value, which was 4.9 times as that of control group when inoculated ten days. The relative expression of TyDC reached the maximum value, which was 2.8 times of that control after inoculating 12 days. The relative expression of UDPGT actually reach 17.1 times than that of control after inoculating 8 days. However, the relative expression of TAT was not affected by this fungus. The changes of four key enzyme genes are positively correlated with the changes of salidroside content in R. crenulata.</p>","PeriodicalId":35924,"journal":{"name":"药学学报","volume":"51 12","pages":"1920-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Effect of endophytic fungus on expression of key enzyme genes in pathway of salidroside biosynthesis in Rhodiola crenulata].\",\"authors\":\"Meng-liang Wang, Ya-nan Wang, Jin-long Cui, Jun-hong Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One strain of endophytic fungus ZPRa-R-1 was obtained for the capacity of promoting production of salidroside in Rhodiola crenulata. To explain the mechanism of salidroside biosynthesis in host plant, eight housekeeping genes were evaluated, and the evaluation method was created for the expression activities of four key enzyme genes PAL (phenylalanine ammonia-lyase), TyDC (tyrosine decarboxylase), TAT (tyrosine transaminase), UDPGT (UDP-glucosyltransferase) referenced double reference genes in biosynthesis pathway of salidroside in R. crenulata. Stabilities of housekeeping genes were confirmed by real-time fluorescent quantitative PCR technology and three softwares including geNorm, NormFinder and BestKeeper, then relative expressions of key enzyme genes were analysized by the 2-ΔΔCt method. The results showed that the most stable gene was GAPDH, followed by PCS, and the most appropriate reference of internal genes were combination with two genes in R. crenulata inoculated with endophytic fungus ZPRa-R-1. Under symbiosis conditions, regularity changes of key enzyme genes affected by endophytic fungus ZPRa-R-1 were as follows: the relative expression activity of PAL attached to peak value, which was 4.9 times as that of control group when inoculated ten days. The relative expression of TyDC reached the maximum value, which was 2.8 times of that control after inoculating 12 days. The relative expression of UDPGT actually reach 17.1 times than that of control after inoculating 8 days. However, the relative expression of TAT was not affected by this fungus. The changes of four key enzyme genes are positively correlated with the changes of salidroside content in R. crenulata.</p>\",\"PeriodicalId\":35924,\"journal\":{\"name\":\"药学学报\",\"volume\":\"51 12\",\"pages\":\"1920-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Effect of endophytic fungus on expression of key enzyme genes in pathway of salidroside biosynthesis in Rhodiola crenulata].
One strain of endophytic fungus ZPRa-R-1 was obtained for the capacity of promoting production of salidroside in Rhodiola crenulata. To explain the mechanism of salidroside biosynthesis in host plant, eight housekeeping genes were evaluated, and the evaluation method was created for the expression activities of four key enzyme genes PAL (phenylalanine ammonia-lyase), TyDC (tyrosine decarboxylase), TAT (tyrosine transaminase), UDPGT (UDP-glucosyltransferase) referenced double reference genes in biosynthesis pathway of salidroside in R. crenulata. Stabilities of housekeeping genes were confirmed by real-time fluorescent quantitative PCR technology and three softwares including geNorm, NormFinder and BestKeeper, then relative expressions of key enzyme genes were analysized by the 2-ΔΔCt method. The results showed that the most stable gene was GAPDH, followed by PCS, and the most appropriate reference of internal genes were combination with two genes in R. crenulata inoculated with endophytic fungus ZPRa-R-1. Under symbiosis conditions, regularity changes of key enzyme genes affected by endophytic fungus ZPRa-R-1 were as follows: the relative expression activity of PAL attached to peak value, which was 4.9 times as that of control group when inoculated ten days. The relative expression of TyDC reached the maximum value, which was 2.8 times of that control after inoculating 12 days. The relative expression of UDPGT actually reach 17.1 times than that of control after inoculating 8 days. However, the relative expression of TAT was not affected by this fungus. The changes of four key enzyme genes are positively correlated with the changes of salidroside content in R. crenulata.
药学学报Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍:
Acta Pharmaceutica Sinica B (APSB) is a bimonthly English peer-reviewed online journal in ScienceDirect, which publishes significant original research articles, communications and high quality reviews of recent advances. APSB encourages submissions from all areas of pharmaceutical sciences, including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics.
APSB is a part of the series Acta Pharmaceutica Sinica, which was founded in 1953. The journal is co-published by Elsevier B.V., in association with the Institute of MateriaMedica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.