即时反馈快速原型的gpu加速计算,操作和多维数据的可视化。

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2018-06-03 eCollection Date: 2018-01-01 DOI:10.1155/2018/2046269
Maximilian Malek, Christoph W Sensen
{"title":"即时反馈快速原型的gpu加速计算,操作和多维数据的可视化。","authors":"Maximilian Malek,&nbsp;Christoph W Sensen","doi":"10.1155/2018/2046269","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We have created an open-source application and framework for rapid GPU-accelerated prototyping, targeting image analysis, including volumetric images such as CT or MRI data.</p><p><strong>Methods: </strong>A visual graph editor enables the design of processing pipelines without programming. Run-time compiled compute shaders enable prototyping of complex operations in a matter of minutes.</p><p><strong>Results: </strong>GPU-acceleration increases processing the speed by at least an order of magnitude when compared to traditional multithreaded CPU-based implementations, while offering the flexibility of scripted implementations.</p><p><strong>Conclusion: </strong>Our framework enables real-time, intuition-guided accelerated algorithm and method development, supported by built-in scriptable visualization.</p><p><strong>Significance: </strong>This is, to our knowledge, the first tool for medical data analysis that provides both high performance and rapid prototyping. As such, it has the potential to act as a force multiplier for further research, enabling handling of high-resolution datasets while providing quasi-instant feedback and visualization of results.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2046269","citationCount":"0","resultStr":"{\"title\":\"Instant Feedback Rapid Prototyping for GPU-Accelerated Computation, Manipulation, and Visualization of Multidimensional Data.\",\"authors\":\"Maximilian Malek,&nbsp;Christoph W Sensen\",\"doi\":\"10.1155/2018/2046269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>We have created an open-source application and framework for rapid GPU-accelerated prototyping, targeting image analysis, including volumetric images such as CT or MRI data.</p><p><strong>Methods: </strong>A visual graph editor enables the design of processing pipelines without programming. Run-time compiled compute shaders enable prototyping of complex operations in a matter of minutes.</p><p><strong>Results: </strong>GPU-acceleration increases processing the speed by at least an order of magnitude when compared to traditional multithreaded CPU-based implementations, while offering the flexibility of scripted implementations.</p><p><strong>Conclusion: </strong>Our framework enables real-time, intuition-guided accelerated algorithm and method development, supported by built-in scriptable visualization.</p><p><strong>Significance: </strong>This is, to our knowledge, the first tool for medical data analysis that provides both high performance and rapid prototyping. As such, it has the potential to act as a force multiplier for further research, enabling handling of high-resolution datasets while providing quasi-instant feedback and visualization of results.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2018-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/2046269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/2046269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2046269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们创建了一个开源应用程序和框架,用于快速gpu加速原型设计,针对图像分析,包括体积图像,如CT或MRI数据。方法:可视化图形编辑器使处理管道的设计无需编程。运行时编译的计算着色器可以在几分钟内完成复杂操作的原型。结果:与传统的基于cpu的多线程实现相比,gpu加速将处理速度提高了至少一个数量级,同时提供了脚本实现的灵活性。结论:我们的框架能够实现实时、直观引导的加速算法和方法开发,并支持内置的可脚本化可视化。意义:据我们所知,这是第一个提供高性能和快速原型的医疗数据分析工具。因此,它有可能成为进一步研究的力量倍增器,能够处理高分辨率数据集,同时提供准即时反馈和结果可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instant Feedback Rapid Prototyping for GPU-Accelerated Computation, Manipulation, and Visualization of Multidimensional Data.

Objective: We have created an open-source application and framework for rapid GPU-accelerated prototyping, targeting image analysis, including volumetric images such as CT or MRI data.

Methods: A visual graph editor enables the design of processing pipelines without programming. Run-time compiled compute shaders enable prototyping of complex operations in a matter of minutes.

Results: GPU-acceleration increases processing the speed by at least an order of magnitude when compared to traditional multithreaded CPU-based implementations, while offering the flexibility of scripted implementations.

Conclusion: Our framework enables real-time, intuition-guided accelerated algorithm and method development, supported by built-in scriptable visualization.

Significance: This is, to our knowledge, the first tool for medical data analysis that provides both high performance and rapid prototyping. As such, it has the potential to act as a force multiplier for further research, enabling handling of high-resolution datasets while providing quasi-instant feedback and visualization of results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1