Ekrem Kaplan, Tolga Karazehir, Selin Gümrükçü, Baran Sarac, A. Sezai Sarac and Esin Hamuryudan
{"title":"外围和非外围羧酸取代Cu(ii)酞菁/还原氧化石墨烯纳米杂化物作为析氢反应催化剂†","authors":"Ekrem Kaplan, Tolga Karazehir, Selin Gümrükçü, Baran Sarac, A. Sezai Sarac and Esin Hamuryudan","doi":"10.1039/D2ME00191H","DOIUrl":null,"url":null,"abstract":"<p >Due to growing environmental concerns and increasing energy needs, hydrogen, one of the key options as a future energy carrier, has lately gained more interest. In this study, we have reported nanohybrid electrocatalyst materials based on peripherally and non-peripherally carboxylic acid substituted copper phthalocyanines (CuPcs) and reduced graphene oxide (rGO) constructed <em>via</em> π–π interactions between CuPcs and rGO. Prepared nanocomposites were coated onto the surface of a glassy carbon electrode and their electrocatalytic activity for the hydrogen evolution reaction (HER) was studied. Structural, electrochemical, and surface morphological properties of the produced electrodes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopy, X-ray diffraction (XRD), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. Electrochemical measurements indicated that the peripherally substituted rGO/CuPc electrodes have more efficiency and activity compared to the non-peripherally substituted ones. In addition, the EIS results show that peripherally carboxylic substituted rGO/CuPc electrodes become more conductive due to the position and content of the carboxyl groups. This increasing performance of the HER implied by a smaller impedance together with more facile electron transfer kinetics indicates a pronounced enhancement of the electrocatalytic hydrogen activity of peripherally carboxylic substituted rGO/CuPc electrodes.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 6","pages":" 810-821"},"PeriodicalIF":3.2000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Peripherally and non-peripherally carboxylic acid substituted Cu(ii) phthalocyanine/reduced graphene oxide nanohybrids for hydrogen evolution reaction catalysts†\",\"authors\":\"Ekrem Kaplan, Tolga Karazehir, Selin Gümrükçü, Baran Sarac, A. Sezai Sarac and Esin Hamuryudan\",\"doi\":\"10.1039/D2ME00191H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to growing environmental concerns and increasing energy needs, hydrogen, one of the key options as a future energy carrier, has lately gained more interest. In this study, we have reported nanohybrid electrocatalyst materials based on peripherally and non-peripherally carboxylic acid substituted copper phthalocyanines (CuPcs) and reduced graphene oxide (rGO) constructed <em>via</em> π–π interactions between CuPcs and rGO. Prepared nanocomposites were coated onto the surface of a glassy carbon electrode and their electrocatalytic activity for the hydrogen evolution reaction (HER) was studied. Structural, electrochemical, and surface morphological properties of the produced electrodes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopy, X-ray diffraction (XRD), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. Electrochemical measurements indicated that the peripherally substituted rGO/CuPc electrodes have more efficiency and activity compared to the non-peripherally substituted ones. In addition, the EIS results show that peripherally carboxylic substituted rGO/CuPc electrodes become more conductive due to the position and content of the carboxyl groups. This increasing performance of the HER implied by a smaller impedance together with more facile electron transfer kinetics indicates a pronounced enhancement of the electrocatalytic hydrogen activity of peripherally carboxylic substituted rGO/CuPc electrodes.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 6\",\"pages\":\" 810-821\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00191h\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00191h","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Peripherally and non-peripherally carboxylic acid substituted Cu(ii) phthalocyanine/reduced graphene oxide nanohybrids for hydrogen evolution reaction catalysts†
Due to growing environmental concerns and increasing energy needs, hydrogen, one of the key options as a future energy carrier, has lately gained more interest. In this study, we have reported nanohybrid electrocatalyst materials based on peripherally and non-peripherally carboxylic acid substituted copper phthalocyanines (CuPcs) and reduced graphene oxide (rGO) constructed via π–π interactions between CuPcs and rGO. Prepared nanocomposites were coated onto the surface of a glassy carbon electrode and their electrocatalytic activity for the hydrogen evolution reaction (HER) was studied. Structural, electrochemical, and surface morphological properties of the produced electrodes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopy, X-ray diffraction (XRD), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. Electrochemical measurements indicated that the peripherally substituted rGO/CuPc electrodes have more efficiency and activity compared to the non-peripherally substituted ones. In addition, the EIS results show that peripherally carboxylic substituted rGO/CuPc electrodes become more conductive due to the position and content of the carboxyl groups. This increasing performance of the HER implied by a smaller impedance together with more facile electron transfer kinetics indicates a pronounced enhancement of the electrocatalytic hydrogen activity of peripherally carboxylic substituted rGO/CuPc electrodes.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.