下载PDF
{"title":"建立研究人间充质间质干细胞多模态神经修复作用的器官型系统","authors":"Devang K. Thakor, Lei Wang, Darcy Benedict, Serdar Kabatas, Ross D. Zafonte, Yang D. Teng","doi":"10.1002/cpsc.58","DOIUrl":null,"url":null,"abstract":"<p>Human mesenchymal stromal stem cells (hMSCs) hold regenerative medicine potential due to their availability, <i>in vitro</i> expansion readiness, and autologous feasibility. For neural repair, hMSCs show translational value in research on stroke, spinal cord injury (SCI), and traumatic brain injury. It is pivotal to establish multimodal <i>in vitro</i> systems to investigate molecular mechanisms underlying neural actions of hMSCs. Here, we describe a platform protocol on how to set up organotypic co-cultures of hMSCs (alone or polymer-scaffolded) with explanted adult rat dorsal root ganglia (DRGs) to determine neural injury and recovery events for designing implants to counteract neurotrauma sequelae. We emphasize <i>in vitro</i> hMSC propagation, polymer scaffolding, hMSC stemness maintenance, hMSC-DRG interaction profiling, and analytical formulas of neuroinflammation, trophic factor expression, DRG neurite outgrowth and tropic tracking, and <i>in vivo</i> verification of tailored implants in rodent models of SCI. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.58","citationCount":"12","resultStr":"{\"title\":\"Establishing an Organotypic System for Investigating Multimodal Neural Repair Effects of Human Mesenchymal Stromal Stem Cells\",\"authors\":\"Devang K. Thakor, Lei Wang, Darcy Benedict, Serdar Kabatas, Ross D. Zafonte, Yang D. Teng\",\"doi\":\"10.1002/cpsc.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human mesenchymal stromal stem cells (hMSCs) hold regenerative medicine potential due to their availability, <i>in vitro</i> expansion readiness, and autologous feasibility. For neural repair, hMSCs show translational value in research on stroke, spinal cord injury (SCI), and traumatic brain injury. It is pivotal to establish multimodal <i>in vitro</i> systems to investigate molecular mechanisms underlying neural actions of hMSCs. Here, we describe a platform protocol on how to set up organotypic co-cultures of hMSCs (alone or polymer-scaffolded) with explanted adult rat dorsal root ganglia (DRGs) to determine neural injury and recovery events for designing implants to counteract neurotrauma sequelae. We emphasize <i>in vitro</i> hMSC propagation, polymer scaffolding, hMSC stemness maintenance, hMSC-DRG interaction profiling, and analytical formulas of neuroinflammation, trophic factor expression, DRG neurite outgrowth and tropic tracking, and <i>in vivo</i> verification of tailored implants in rodent models of SCI. © 2018 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":53703,\"journal\":{\"name\":\"Current Protocols in Stem Cell Biology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpsc.58\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Stem Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12
引用
批量引用