下载PDF
{"title":"血管化胰岛样器官的自凝生成方法","authors":"Yoshinobu Takahashi, Takanori Takebe, Hideki Taniguchi","doi":"10.1002/cpsc.49","DOIUrl":null,"url":null,"abstract":"<p>Despite the promise of emerging organoid-based approaches, building additional complexity, such as the vascular network, remains a major challenge toward regenerative therapy. Recently, we developed a complex organoid engineering method by \"self-condensation,\" wherein mesenchymal cell–dependent contraction enables large-scale condensation from heterotypic multiple progenitors. Here, we describe the adaptation of this protocol for generating three-dimensional (3D) pancreatic condensates from dissociated β cell lines (MIN6) together with blood vessel–forming progenitors. This protocol achieves 3D pancreatic islet-like organoid self-organization with endothelialized networks through mesenchymal stem cell–dependent contraction. Transplantation of pancreatic islet-like organoids treats diabetes in mice effectively. Given the donor shortage associated with clinical islet transplantation, our approach offers a promising alternative toward therapeutic organoid transplantation. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.49","citationCount":"21","resultStr":"{\"title\":\"Methods for Generating Vascularized Islet-Like Organoids Via Self-Condensation\",\"authors\":\"Yoshinobu Takahashi, Takanori Takebe, Hideki Taniguchi\",\"doi\":\"10.1002/cpsc.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the promise of emerging organoid-based approaches, building additional complexity, such as the vascular network, remains a major challenge toward regenerative therapy. Recently, we developed a complex organoid engineering method by \\\"self-condensation,\\\" wherein mesenchymal cell–dependent contraction enables large-scale condensation from heterotypic multiple progenitors. Here, we describe the adaptation of this protocol for generating three-dimensional (3D) pancreatic condensates from dissociated β cell lines (MIN6) together with blood vessel–forming progenitors. This protocol achieves 3D pancreatic islet-like organoid self-organization with endothelialized networks through mesenchymal stem cell–dependent contraction. Transplantation of pancreatic islet-like organoids treats diabetes in mice effectively. Given the donor shortage associated with clinical islet transplantation, our approach offers a promising alternative toward therapeutic organoid transplantation. © 2018 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":53703,\"journal\":{\"name\":\"Current Protocols in Stem Cell Biology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpsc.49\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Stem Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 21
引用
批量引用