提高药物粘附性:可食性味觉膜中苦味的抑制。

Q1 Pharmacology, Toxicology and Pharmaceutics Advances in Pharmacological Sciences Pub Date : 2018-06-25 DOI:10.1155/2018/8043837
Silvy Cherian, Brian Sang Lee, Robin M Tucker, Kevin Lee, Gregory Smutzer
{"title":"提高药物粘附性:可食性味觉膜中苦味的抑制。","authors":"Silvy Cherian,&nbsp;Brian Sang Lee,&nbsp;Robin M Tucker,&nbsp;Kevin Lee,&nbsp;Gregory Smutzer","doi":"10.1155/2018/8043837","DOIUrl":null,"url":null,"abstract":"<p><p>Bitter taste is aversive to humans, and many oral medications exhibit a bitter taste. Bitter taste can be suppressed by the use of inhibitors or by masking agents such as sucralose. Another approach is to encapsulate bitter tasting compounds in order to delay their release. This delayed release can permit the prior release of bitter masking agents. Suppression of bitter taste was accomplished by encapsulating a bitter taste stimulus in erodible stearic acid microspheres, and embedding these 5 <i>µ</i>meter diameter microspheres in pullulan films that contain sucralose and peppermint oil as masking agents, along with an encapsulated masking agent (sucralose). Psychophysical tests demonstrated that films which encapsulated both quinine and sucralose produced a significant and continuous sweet percept when compared to films without sucralose microspheres. Films with both quinine and sucralose microspheres also produced positive hedonic scores that did not differ from control films that contained only sucralose microspheres or only empty (blank) microspheres. The encapsulation of bitter taste stimuli in lipid microspheres, and embedding these microspheres in rapidly dissolving edible taste films that contain masking agents in both the film base and in microspheres, is a promising approach for diminishing the bitter taste of drugs and related compounds.</p>","PeriodicalId":7389,"journal":{"name":"Advances in Pharmacological Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/8043837","citationCount":"8","resultStr":"{\"title\":\"Toward Improving Medication Adherence: The Suppression of Bitter Taste in Edible Taste Films.\",\"authors\":\"Silvy Cherian,&nbsp;Brian Sang Lee,&nbsp;Robin M Tucker,&nbsp;Kevin Lee,&nbsp;Gregory Smutzer\",\"doi\":\"10.1155/2018/8043837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bitter taste is aversive to humans, and many oral medications exhibit a bitter taste. Bitter taste can be suppressed by the use of inhibitors or by masking agents such as sucralose. Another approach is to encapsulate bitter tasting compounds in order to delay their release. This delayed release can permit the prior release of bitter masking agents. Suppression of bitter taste was accomplished by encapsulating a bitter taste stimulus in erodible stearic acid microspheres, and embedding these 5 <i>µ</i>meter diameter microspheres in pullulan films that contain sucralose and peppermint oil as masking agents, along with an encapsulated masking agent (sucralose). Psychophysical tests demonstrated that films which encapsulated both quinine and sucralose produced a significant and continuous sweet percept when compared to films without sucralose microspheres. Films with both quinine and sucralose microspheres also produced positive hedonic scores that did not differ from control films that contained only sucralose microspheres or only empty (blank) microspheres. The encapsulation of bitter taste stimuli in lipid microspheres, and embedding these microspheres in rapidly dissolving edible taste films that contain masking agents in both the film base and in microspheres, is a promising approach for diminishing the bitter taste of drugs and related compounds.</p>\",\"PeriodicalId\":7389,\"journal\":{\"name\":\"Advances in Pharmacological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/8043837\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pharmacological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/8043837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pharmacological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8043837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 8

摘要

苦味对人类来说是令人厌恶的,许多口服药物都表现出苦味。苦味可以通过使用抑制剂或三氯蔗糖等掩蔽剂来抑制。另一种方法是封装苦味化合物,以延迟其释放。这种延迟释放可以允许苦味掩蔽剂的预先释放。苦味的抑制是通过将苦味刺激物包埋在可侵蚀的硬脂酸微球中,并包埋这些5 普鲁兰膜中直径为µm的微球,含有三氯蔗糖和薄荷油作为掩蔽剂,以及封装的掩蔽剂(三氯蔗糖)。心理物理测试表明,与不含三氯蔗糖微球的薄膜相比,同时包封奎宁和三氯蔗糖的薄膜产生了显著且连续的甜味。同时含有奎宁和三氯蔗糖微球的薄膜也产生了阳性特征评分,与仅含有三氯蔗糖或仅含有空(空白)微球的对照薄膜没有差异。将苦味刺激物包埋在脂质微球中,并将这些微球包埋在快速溶解的可食用味觉膜中,该膜在膜基和微球中都含有掩蔽剂,这是减少药物和相关化合物苦味的一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Improving Medication Adherence: The Suppression of Bitter Taste in Edible Taste Films.

Bitter taste is aversive to humans, and many oral medications exhibit a bitter taste. Bitter taste can be suppressed by the use of inhibitors or by masking agents such as sucralose. Another approach is to encapsulate bitter tasting compounds in order to delay their release. This delayed release can permit the prior release of bitter masking agents. Suppression of bitter taste was accomplished by encapsulating a bitter taste stimulus in erodible stearic acid microspheres, and embedding these 5 µmeter diameter microspheres in pullulan films that contain sucralose and peppermint oil as masking agents, along with an encapsulated masking agent (sucralose). Psychophysical tests demonstrated that films which encapsulated both quinine and sucralose produced a significant and continuous sweet percept when compared to films without sucralose microspheres. Films with both quinine and sucralose microspheres also produced positive hedonic scores that did not differ from control films that contained only sucralose microspheres or only empty (blank) microspheres. The encapsulation of bitter taste stimuli in lipid microspheres, and embedding these microspheres in rapidly dissolving edible taste films that contain masking agents in both the film base and in microspheres, is a promising approach for diminishing the bitter taste of drugs and related compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Pharmacological Sciences
Advances in Pharmacological Sciences PHARMACOLOGY & PHARMACY-
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊介绍: Advances in Pharmacological and Pharmaceutical Sciences is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of experimental and clinical pharmacology, pharmaceutics, medicinal chemistry and drug delivery. Topics covered by the journal include, but are not limited to: -Biochemical pharmacology, drug mechanism of action, pharmacodynamics, pharmacogenetics, pharmacokinetics, and toxicology. -The design and preparation of new drugs, and their safety and efficacy in humans, including descriptions of drug dosage forms. -All areas of medicinal chemistry, such as drug discovery, design and synthesis. -Basic biology of drug and gene delivery through to application and development of these principles, through therapeutic delivery and targeting. Areas covered include bioavailability, controlled release, microcapsules, novel drug delivery systems, personalized drug delivery, and techniques for passing biological barriers.
期刊最新文献
Combined Inositol Hexakisphosphate and Inositol Supplement Consumption Improves Serum Alpha-Amylase Activity and Hematological Parameters in Streptozotocin-Induced Type 2 Diabetic Rats Protective Effects of Aqueous Extract of Baillonella toxisperma Stem Bark on Dexamethasone-Induced Insulin Resistance in Rats Effect of Calcium and Vitamin D Supplements as an Adjuvant Therapy to Metformin on Menstrual Cycle Abnormalities, Hormonal Profile, and IGF-1 System in Polycystic Ovary Syndrome Patients: A Randomized, Placebo-Controlled Clinical Trial Evaluation of Anti-HIV-1 Integrase and Anti-Inflammatory Activities of Compounds from Betula alnoides Buch-Ham. Nature-Inspired Drugs: Expanding Horizons of Contemporary Therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1