Betula alnoides is a medicinal plant in Thai traditional longevity preparations. The crude extracts of this plant possess various biological activities. However, the isolated compounds from this plant have no reports of anti-HIV-1 integrase (IN) activity. Therefore, the present study aims to investigate the anti-HIV-1 integrase and anti-inflammatory effects of isolated compounds from this plant and predict the interaction of compounds with integrase active sites. From the bioassay-guided fractionation of the ethanol extract of B. alnoides stems using chromatographic techniques, five pentacyclic triterpenoid compounds were obtained. They are betulinic acid (1), betulin (2), lupeol (3), oleanolic acid (4), and ursolic acid (5). Compound 2 exhibited the most potent inhibitory activity against HIV-1 IN, with an IC50 value of 17.7 μM. Potential interactions of compounds with IN active sites were investigated using computational docking. The results indicated that active compounds interacted with Asp64, a residue participating in 3'-processing, and Thr66, His67, and Lys159, residues participating in strand-transfer reactions of the integration process. Regarding anti-inflammatory activity, all compounds exerted significant inhibitory effects on LPS-induced nitric oxide production (IC50 < 68.7 μM). Thus, this research provides additional scientific support for the use of B. alnoides in traditional medicine for the treatment of HIV patients.
The aim of this study was to synthesize a series of nickel(II)phthalocyanines (NiPcs) bearing four 4(3H)-quinazolinone ring system units, (qz)4NiPcs 4a-d. The electronic factors in the 4(3H)-quinazolinone moiety that attached to the NiPc skeleton had a magnificent effect on the antibacterial activity of the newly synthesized (qz)4NiPcs 4a-d against Escherichia coli. The minimum MICs and MBCs value were recorded for compounds 4a, 4b, 4c, and 4d, respectively. The results indicated that the studied (qz)4NiPcs 4a-d units possessed a broad spectrum of activity against Escherichia coli. Their antibacterial activities were found in the order of 4d > 4c > 4b > 4a against Escherichia coli, and the strongest antibacterial activity was achieved with compound 4d.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective loss of dopamine neurons in the substantia nigra pars compacta of the midbrain. Reports from postmortem studies in the human PD brain, and experimental PD models reveal that endoplasmic reticulum (ER) stress is implicated in the pathogenesis of PD. In times of stress, the unfolded or misfolded proteins overload the folding capacity of the ER to induce a condition generally known as ER stress. During ER stress, cells activate the unfolded protein response (UPR) to handle increasing amounts of abnormal proteins, and recent evidence has demonstrated the activation of the ER chaperone GRP78/BiP (78 kDa glucose-regulated protein/binding immunoglobulin protein), which is important for proper folding of newly synthesized and partly folded proteins to maintain protein homeostasis. Although the activation of this protein is essential for the initiation of the UPR in PD, there are inconsistent reports on its expression in various PD models. Consequently, this review article aims to summarize current knowledge on neuroprotective agents targeting the expression of GRP78/BiP in the regulation of ER stress in experimental PD models.
Rapid, eco-friendly, and cost-effective one-pot synthesis of copper nanoparticles is reported here using medicinal plants like Gnidia glauca and Plumbago zeylanica. Aqueous extracts of flower, leaf, and stem of G. glauca and leaves of P. zeylanica were prepared which could effectively reduce Cu2+ ions to CuNPs within 5 h at 100°C which were further characterized using UV-visible spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering, X-ray diffraction, and Fourier-transform infrared spectroscopy. Further, the CuNPs were checked for antidiabetic activity using porcine pancreatic α-amylase and α-glucosidase inhibition followed by evaluation of mechanism using circular dichroism spectroscopy. CuNPs were found to be predominantly spherical in nature with a diameter ranging from 1 to 5 nm. The phenolics and flavonoids in the extracts might play a critical role in the synthesis and stabilization process. Significant change in the peak at ∼1095 cm-1 corresponding to C-O-C bond in ether was observed. CuNPs could inhibit porcine pancreatic α-amylase up to 30% to 50%, while they exhibited a more significant inhibition of α-glucosidase from 70% to 88%. The mechanism of enzyme inhibition was attributed due to the conformational change owing to drastic alteration of secondary structure by CuNPs. This is the first study of its kind that provides a strong scientific rationale that phytogenic CuNPs synthesized using G. glauca and P. zeylanica can be considered to develop candidate antidiabetic nanomedicine.
One of the main focuses of tissue engineering is to search for tridimensional scaffold materials, complying with nature's properties for tissue regeneration. Determining material biocompatibility is a fundamental step in considering its use. Therefore, the purpose of this study was to analyze osteoblast cell adhesion and viability on different materials to determine which was more compatible for future bone regeneration. Tridimensional structures were fabricated with hydroxyapatite, collagen, and porous silica. The bovine bone was used as material control. Biocompatibility was determined by seeding primary osteoblasts on each tridimensional structure. Cellular morphology was assessed by SEM and viability through confocal microscopy. Osteoblast colonization was observed on all evaluated materials' surface, revealing they did not elicit osteoblast cytotoxicity. Analyses of four different materials studied with diverse compositions and characteristics showed that adhesiveness was best seen for HA and viability for collagen. In general, the results of this investigation suggest these materials can be used in combination, as scaffolds intended for bone regeneration in dental and medical fields.
The objective of the present study was to evaluate "DXB-2030," a polyherbal combination of Trigonella foenum-graecum, Aloe vera, Sphaeranthus indicus, Nardostachys jatamansi, and Symplocos racemosa extracts in an experimental model of testosterone propionate (TP), induced polycystic ovary syndrome (PCOS) in female rats. Thirty animals were divided into 3 groups of 10 each; group 1 served as normal control; group 2 was administered with TP and served as positive control; along with TP, group 3 was treated with "DXB-2030" at a dose of 100 mg/kg p.o., for 60 days. At the end of the study period, the animals were subjected for the estimation of serum testosterone levels, oral glucose tolerance test (OGTT), weight of the ovaries, estrous cycle, and histopathological evaluation. An in vitro assay on GLUT4 expression was carried out to understand the effect of "DXB-2030" on insulin resistance. Results showed that treatment with "DXB-2030" reversed the TP-induced changes by increasing the GLUT4 expression and decreasing the body weight, testosterone levels, AUC of glucose in OGTT, and the cystic follicles of the ovaries, thus indicating its beneficial effect in PCOS by ameliorating the metabolic dysfunction and reproductive impairment, which are the pathophysiological conditions associated with PCOS. From the results obtained, it can be concluded that "DXB-2030" was effective in the management of experimental PCOS and hence may be recommended in the treatment of PCOS.