酵母双杂交法鉴定相互作用蛋白

Q1 Biochemistry, Genetics and Molecular Biology Current Protocols in Protein Science Pub Date : 2018-08-21 DOI:10.1002/cpps.70
Aurora Paiano, Azzurra Margiotta, Maria De Luca, Cecilia Bucci
{"title":"酵母双杂交法鉴定相互作用蛋白","authors":"Aurora Paiano,&nbsp;Azzurra Margiotta,&nbsp;Maria De Luca,&nbsp;Cecilia Bucci","doi":"10.1002/cpps.70","DOIUrl":null,"url":null,"abstract":"<p>This article describes the general method to perform the classical two-hybrid system. Although it has already been more than 25 years since this technique was developed, it still represents one of the best and most inexpensive, time saving, and straightforward methods to identify and study protein-protein interactions. Indeed, this system can be easily used to identify interacting proteins for a given protein, to check interactions between two known proteins, or to map interacting domains. Most of the interactions revealed using the two-hybrid assay have been proven to be binary direct interactions. Data comparison with other systems, such as mass spectrometry, have demonstrated that this system is at least as reliable. In fact, its use is increasing with time, and at present numerous variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the generation of a proteome-scale map of protein-protein interactions in specific system. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10866,"journal":{"name":"Current Protocols in Protein Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpps.70","citationCount":"34","resultStr":"{\"title\":\"Yeast Two-Hybrid Assay to Identify Interacting Proteins\",\"authors\":\"Aurora Paiano,&nbsp;Azzurra Margiotta,&nbsp;Maria De Luca,&nbsp;Cecilia Bucci\",\"doi\":\"10.1002/cpps.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article describes the general method to perform the classical two-hybrid system. Although it has already been more than 25 years since this technique was developed, it still represents one of the best and most inexpensive, time saving, and straightforward methods to identify and study protein-protein interactions. Indeed, this system can be easily used to identify interacting proteins for a given protein, to check interactions between two known proteins, or to map interacting domains. Most of the interactions revealed using the two-hybrid assay have been proven to be binary direct interactions. Data comparison with other systems, such as mass spectrometry, have demonstrated that this system is at least as reliable. In fact, its use is increasing with time, and at present numerous variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the generation of a proteome-scale map of protein-protein interactions in specific system. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10866,\"journal\":{\"name\":\"Current Protocols in Protein Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpps.70\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Protein Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpps.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Protein Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpps.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 34

摘要

本文介绍了实现经典双混合系统的一般方法。虽然这项技术已经发展了超过25年,但它仍然是鉴定和研究蛋白质相互作用的最好、最便宜、最省时、最直接的方法之一。事实上,该系统可以很容易地用于识别给定蛋白质的相互作用蛋白质,检查两个已知蛋白质之间的相互作用,或绘制相互作用结构域。用双杂交试验发现的大多数相互作用已被证明是二元直接相互作用。与其他系统(如质谱)的数据比较表明,该系统至少同样可靠。事实上,它的使用随着时间的推移而增加,目前已经开发了许多酵母双杂交试验的变体,包括高通量系统,可以促进生成特定系统中蛋白质-蛋白质相互作用的蛋白质组尺度图。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yeast Two-Hybrid Assay to Identify Interacting Proteins

This article describes the general method to perform the classical two-hybrid system. Although it has already been more than 25 years since this technique was developed, it still represents one of the best and most inexpensive, time saving, and straightforward methods to identify and study protein-protein interactions. Indeed, this system can be easily used to identify interacting proteins for a given protein, to check interactions between two known proteins, or to map interacting domains. Most of the interactions revealed using the two-hybrid assay have been proven to be binary direct interactions. Data comparison with other systems, such as mass spectrometry, have demonstrated that this system is at least as reliable. In fact, its use is increasing with time, and at present numerous variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the generation of a proteome-scale map of protein-protein interactions in specific system. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Protein Science
Current Protocols in Protein Science Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With the mapping of the human genome, more and more researchers are exploring protein structures and functions in living organisms. Current Protocols in Protein Science provides protein scientists, biochemists, molecular biologists, geneticists, and others with the first comprehensive suite of protocols for this growing field.
期刊最新文献
Issue Information De Novo Protein Design Using the Blueprint Builder in Rosetta Methods for Expression of Recombinant Proteins Using a Pichia pastoris Cell-Free System Histone Purification Combined with High-Resolution Mass Spectrometry to Examine Histone Post-Translational Modifications and Histone Variants in Caenorhabditis elegans Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1