基于脂质siRNA纳米递送系统:一个学习过程,以改善从概念转移到临床应用。

IF 3.2 Q2 Pharmacology, Toxicology and Pharmaceutics Current clinical pharmacology Pub Date : 2018-01-01 DOI:10.2174/1574884713666180829143054
Sebastián Ezequiel Pérez, Adriana Mónica Carlucci
{"title":"基于脂质siRNA纳米递送系统:一个学习过程,以改善从概念转移到临床应用。","authors":"Sebastián Ezequiel Pérez,&nbsp;Adriana Mónica Carlucci","doi":"10.2174/1574884713666180829143054","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The molecular mechanism of silencing genes using small interference RNA is as particular and innovative phenomenon as the proposed delivery systems to release them. Recent advances in RNAi have resulted in the development of multiple siRNA candidates that are currently being evaluated in preclinical / clinical instances. SNALP®, Atuplex® and Rondel® technologies stand out; they are mainly based on polymers, cyclodextrins or lipids.</p><p><strong>Method: </strong>The objective of this work is to review the main features that Gene Therapy Medicinal Product under current clinical evaluation present from a pharmaceutical technology point of view; it tries to bring up theoretical concepts that give scientific support to the interpretation of data obtained during pharmaceutical development process. It is basically focused on improving the translation from bench/theoretical concepts to bedside of non viral vectors carrying siRNA.</p><p><strong>Results: </strong>The extensive presence of lipid-based nanoparticle non-viral systems in clinical stages is due to the advantages of their formulations. These include: safety, low immunogenicity, high degree of material properties control, function tuning and ability to impact pharmacokinetics and in vivo biodistribution. This work presents a pharmaceutical approach so as to improve the potential of success in siRNA delivery using liposomal systems.</p><p><strong>Conclusion: </strong>Formulation design should be increasingly addressed with industrial criteria; it should be based on quality by design and on the estimation of critical attributes that affect product performance, and supported by a range of characterization techniques and appropriate analytical methods.</p>","PeriodicalId":10746,"journal":{"name":"Current clinical pharmacology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lipid-based siRNA Nanodelivery Systems: A Learning Process for Improving Transfer from Concepts to Clinical Applications.\",\"authors\":\"Sebastián Ezequiel Pérez,&nbsp;Adriana Mónica Carlucci\",\"doi\":\"10.2174/1574884713666180829143054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The molecular mechanism of silencing genes using small interference RNA is as particular and innovative phenomenon as the proposed delivery systems to release them. Recent advances in RNAi have resulted in the development of multiple siRNA candidates that are currently being evaluated in preclinical / clinical instances. SNALP®, Atuplex® and Rondel® technologies stand out; they are mainly based on polymers, cyclodextrins or lipids.</p><p><strong>Method: </strong>The objective of this work is to review the main features that Gene Therapy Medicinal Product under current clinical evaluation present from a pharmaceutical technology point of view; it tries to bring up theoretical concepts that give scientific support to the interpretation of data obtained during pharmaceutical development process. It is basically focused on improving the translation from bench/theoretical concepts to bedside of non viral vectors carrying siRNA.</p><p><strong>Results: </strong>The extensive presence of lipid-based nanoparticle non-viral systems in clinical stages is due to the advantages of their formulations. These include: safety, low immunogenicity, high degree of material properties control, function tuning and ability to impact pharmacokinetics and in vivo biodistribution. This work presents a pharmaceutical approach so as to improve the potential of success in siRNA delivery using liposomal systems.</p><p><strong>Conclusion: </strong>Formulation design should be increasingly addressed with industrial criteria; it should be based on quality by design and on the estimation of critical attributes that affect product performance, and supported by a range of characterization techniques and appropriate analytical methods.</p>\",\"PeriodicalId\":10746,\"journal\":{\"name\":\"Current clinical pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current clinical pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574884713666180829143054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current clinical pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574884713666180829143054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 3

摘要

背景:利用小干扰RNA沉默基因的分子机制与提出的释放小干扰RNA的递送系统一样,是一种独特而创新的现象。RNAi的最新进展导致了多种siRNA候选物的开发,目前正在临床前/临床实例中进行评估。SNALP®、Atuplex®和Rondel®技术脱颖而出;它们主要基于聚合物、环糊精或脂质。方法:从制药技术的角度综述目前临床评价中基因治疗药品的主要特点;它试图提出理论概念,为药物开发过程中获得的数据的解释提供科学支持。它基本上专注于改进从实验室/理论概念到携带siRNA的非病毒载体的临床翻译。结果:脂基纳米颗粒非病毒系统在临床阶段的广泛存在是由于其配方的优势。这些因素包括:安全性、低免疫原性、高度的材料特性控制、功能调整和影响药代动力学和体内生物分布的能力。这项工作提出了一种药物方法,以便提高使用脂质体系统成功递送siRNA的潜力。结论:制剂设计应越来越多地采用行业标准;它应该基于质量的设计和对影响产品性能的关键属性的估计,并由一系列表征技术和适当的分析方法支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipid-based siRNA Nanodelivery Systems: A Learning Process for Improving Transfer from Concepts to Clinical Applications.

Background: The molecular mechanism of silencing genes using small interference RNA is as particular and innovative phenomenon as the proposed delivery systems to release them. Recent advances in RNAi have resulted in the development of multiple siRNA candidates that are currently being evaluated in preclinical / clinical instances. SNALP®, Atuplex® and Rondel® technologies stand out; they are mainly based on polymers, cyclodextrins or lipids.

Method: The objective of this work is to review the main features that Gene Therapy Medicinal Product under current clinical evaluation present from a pharmaceutical technology point of view; it tries to bring up theoretical concepts that give scientific support to the interpretation of data obtained during pharmaceutical development process. It is basically focused on improving the translation from bench/theoretical concepts to bedside of non viral vectors carrying siRNA.

Results: The extensive presence of lipid-based nanoparticle non-viral systems in clinical stages is due to the advantages of their formulations. These include: safety, low immunogenicity, high degree of material properties control, function tuning and ability to impact pharmacokinetics and in vivo biodistribution. This work presents a pharmaceutical approach so as to improve the potential of success in siRNA delivery using liposomal systems.

Conclusion: Formulation design should be increasingly addressed with industrial criteria; it should be based on quality by design and on the estimation of critical attributes that affect product performance, and supported by a range of characterization techniques and appropriate analytical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current clinical pharmacology
Current clinical pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Current Clinical Pharmacology publishes frontier reviews on all the latest advances in clinical pharmacology. The journal"s aim is to publish the highest quality review articles in the field. Topics covered include: pharmacokinetics; therapeutic trials; adverse drug reactions; drug interactions; drug metabolism; pharmacoepidemiology; and drug development. The journal is essential reading for all researchers in clinical pharmacology.
期刊最新文献
Assessment of the Efficacy of Withania somnifera Root Extract in Patients with Generalized Anxiety Disorder: A Randomized Double-blind Placebo- Controlled Trial. Meet Our Editorial Board Member Comparative effectiveness of Agmatine and Choline treatment in rats with cognitive impairment induced by AlCl3 and Forced Swim Stress. Meet Our Associate Editorial Board Member Meet Our Editorial Board Member
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1