{"title":"现代和传统方法结合成一个有效的全血酸碱灰盒数学模型。","authors":"Filip Ježek, Jiří Kofránek","doi":"10.1186/s12976-018-0086-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The acidity of human body fluids, expressed by the pH, is physiologically regulated in a narrow range, which is required for the proper function of cellular metabolism. Acid-base disorders are common especially in intensive care, and the acid-base status is one of the vital clinical signs for the patient management. Because acid-base balance is connected to many bodily processes and regulations, complex mathematical models are needed to get insight into the mixed disorders and to act accordingly. The goal of this study is to develop a full-blood acid-base model, designed to be further integrated into more complex human physiology models.</p><p><strong>Results: </strong>We have developed computationally simple and robust full-blood model, yet thorough enough to cover most of the common pathologies. Thanks to its simplicity and usage of Modelica language, it is suitable to be embedded within more elaborate systems. We achieved the simplification by a combination of behavioral Siggaard-Andersen's traditional approach for erythrocyte modeling and the mechanistic Stewart's physicochemical approach for plasma modeling. The resulting model is capable of providing variations in arterial pCO2, base excess, strong ion difference, hematocrit, plasma protein, phosphates and hemodilution/hemoconcentration, but insensitive to DPG and CO concentrations.</p><p><strong>Conclusions: </strong>This study presents a straightforward unification of Siggaard-Andersen's and Stewart's acid-base models. The resulting full-blood acid-base model is designed to be a core part of a complex dynamic whole-body acid-base and gas transfer model.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-018-0086-9","citationCount":"5","resultStr":"{\"title\":\"Modern and traditional approaches combined into an effective gray-box mathematical model of full-blood acid-base.\",\"authors\":\"Filip Ježek, Jiří Kofránek\",\"doi\":\"10.1186/s12976-018-0086-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The acidity of human body fluids, expressed by the pH, is physiologically regulated in a narrow range, which is required for the proper function of cellular metabolism. Acid-base disorders are common especially in intensive care, and the acid-base status is one of the vital clinical signs for the patient management. Because acid-base balance is connected to many bodily processes and regulations, complex mathematical models are needed to get insight into the mixed disorders and to act accordingly. The goal of this study is to develop a full-blood acid-base model, designed to be further integrated into more complex human physiology models.</p><p><strong>Results: </strong>We have developed computationally simple and robust full-blood model, yet thorough enough to cover most of the common pathologies. Thanks to its simplicity and usage of Modelica language, it is suitable to be embedded within more elaborate systems. We achieved the simplification by a combination of behavioral Siggaard-Andersen's traditional approach for erythrocyte modeling and the mechanistic Stewart's physicochemical approach for plasma modeling. The resulting model is capable of providing variations in arterial pCO2, base excess, strong ion difference, hematocrit, plasma protein, phosphates and hemodilution/hemoconcentration, but insensitive to DPG and CO concentrations.</p><p><strong>Conclusions: </strong>This study presents a straightforward unification of Siggaard-Andersen's and Stewart's acid-base models. The resulting full-blood acid-base model is designed to be a core part of a complex dynamic whole-body acid-base and gas transfer model.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12976-018-0086-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12976-018-0086-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-018-0086-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Modern and traditional approaches combined into an effective gray-box mathematical model of full-blood acid-base.
Background: The acidity of human body fluids, expressed by the pH, is physiologically regulated in a narrow range, which is required for the proper function of cellular metabolism. Acid-base disorders are common especially in intensive care, and the acid-base status is one of the vital clinical signs for the patient management. Because acid-base balance is connected to many bodily processes and regulations, complex mathematical models are needed to get insight into the mixed disorders and to act accordingly. The goal of this study is to develop a full-blood acid-base model, designed to be further integrated into more complex human physiology models.
Results: We have developed computationally simple and robust full-blood model, yet thorough enough to cover most of the common pathologies. Thanks to its simplicity and usage of Modelica language, it is suitable to be embedded within more elaborate systems. We achieved the simplification by a combination of behavioral Siggaard-Andersen's traditional approach for erythrocyte modeling and the mechanistic Stewart's physicochemical approach for plasma modeling. The resulting model is capable of providing variations in arterial pCO2, base excess, strong ion difference, hematocrit, plasma protein, phosphates and hemodilution/hemoconcentration, but insensitive to DPG and CO concentrations.
Conclusions: This study presents a straightforward unification of Siggaard-Andersen's and Stewart's acid-base models. The resulting full-blood acid-base model is designed to be a core part of a complex dynamic whole-body acid-base and gas transfer model.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.