{"title":"双足机器人参数步态中相位变量的去除。","authors":"Alireza Mohammadi, Jonathan Horn, Robert D Gregg","doi":"10.1109/CCTA.2017.8062563","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid zero dynamics-based control is a promising framework for controlling underactuated biped robots and powered prosthetic legs. In this control paradigm, stable walking gaits are implicitly encoded in polynomial output functions of the robot configuration variables, which are to be zeroed via feedback. The biped output functions are parameterized by a suitable mechanical phasing variable whose evolution determines the biped gait progression during each step. Determining a proper phase variable, however, might not always be a trivial task. In this paper, we present a method for generating output functions from given parametric walking gaits without any explicit knowledge of the phase variables. Our elimination method is based on computing the resultant of polynomials, an algebraic tool widely used in computer algebra.</p>","PeriodicalId":72705,"journal":{"name":"Control Technology and Applications. Control Technology and Applications","volume":"2017 ","pages":"834-840"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CCTA.2017.8062563","citationCount":"3","resultStr":"{\"title\":\"Removing Phase Variables from Biped Robot Parametric Gaits.\",\"authors\":\"Alireza Mohammadi, Jonathan Horn, Robert D Gregg\",\"doi\":\"10.1109/CCTA.2017.8062563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybrid zero dynamics-based control is a promising framework for controlling underactuated biped robots and powered prosthetic legs. In this control paradigm, stable walking gaits are implicitly encoded in polynomial output functions of the robot configuration variables, which are to be zeroed via feedback. The biped output functions are parameterized by a suitable mechanical phasing variable whose evolution determines the biped gait progression during each step. Determining a proper phase variable, however, might not always be a trivial task. In this paper, we present a method for generating output functions from given parametric walking gaits without any explicit knowledge of the phase variables. Our elimination method is based on computing the resultant of polynomials, an algebraic tool widely used in computer algebra.</p>\",\"PeriodicalId\":72705,\"journal\":{\"name\":\"Control Technology and Applications. Control Technology and Applications\",\"volume\":\"2017 \",\"pages\":\"834-840\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CCTA.2017.8062563\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Technology and Applications. Control Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA.2017.8062563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Technology and Applications. Control Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2017.8062563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Removing Phase Variables from Biped Robot Parametric Gaits.
Hybrid zero dynamics-based control is a promising framework for controlling underactuated biped robots and powered prosthetic legs. In this control paradigm, stable walking gaits are implicitly encoded in polynomial output functions of the robot configuration variables, which are to be zeroed via feedback. The biped output functions are parameterized by a suitable mechanical phasing variable whose evolution determines the biped gait progression during each step. Determining a proper phase variable, however, might not always be a trivial task. In this paper, we present a method for generating output functions from given parametric walking gaits without any explicit knowledge of the phase variables. Our elimination method is based on computing the resultant of polynomials, an algebraic tool widely used in computer algebra.