微空化:爆炸创伤性脑损伤建模的关键?

Q3 Medicine Concussion Pub Date : 2017-08-01 eCollection Date: 2017-11-01 DOI:10.2217/cnc-2017-0011
Christian Franck
{"title":"微空化:爆炸创伤性脑损伤建模的关键?","authors":"Christian Franck","doi":"10.2217/cnc-2017-0011","DOIUrl":null,"url":null,"abstract":"Traumatic brain injuries (TBIs) are a significant source of deaths and disabilities worldwide with an associated healthcare burden in the billions of dollars [1]. Brain injuries generally result from either direct impact, blast or rapid acceleration and deceleration of the brain, and their severity is graded neurosymptomatically from mild to severe using the Glasgow Coma Scale. While these injuries, which in their mild form include concussions, are generally initiated by mechanical stress waves traveling through the brain resulting in exceeding tissue damage quantified as either compressive, tensile or shearing strains [2–4], blast TBIs have a slightly different origin, and as thus their injury mechanism and pathology remain an active topic of research [5,6]. In blast waves generated from explosions, including improvised explosive devices (IEDs) [6,7], the initial blast-generated shock wave profile features a sudden increase in pressure, often referred to as overpressure, followed by a low magnitude long-range negative pressure tail [5,7]. This profile is significantly different from most civilian blunt head impact scenarios, which, at least initially, are almost entirely composed of fast traveling pressure waves [5]. These shock-like pressure profiles introduce significant pressure changes across the brain on the order of a microto submilliseconds, whereas typical blunt trauma stresses change over the course of milliseconds and above. The classification of blast TBI has its own categorization from primary to quaternary blast injury [6]. Secondary to quaternary blast injuries have correlates in the civilian world whereas primary blast injuries that are classified by the interaction of the blast wave itself with the brain are unique to military and law enforcement personnel. Details of the origin of the injury and its pathology have remained elusive. Part of the challenge in dissecting the details of blast injury lies in the complex physical interaction between the fast moving pressure wave and the compliant brain. Furthermore, our understanding of the deformation behavior of soft brain tissue and its relationship to specific neuropathologies is still in its infancy. Although the initial blast wave is generally a pure pressure wave, it can turn into part pressure and part shear wave upon encountering the complex geometry of the human head and brain. While the traversing pressure wave will cause the tissue to undergo changes in volume, the shear wave can generate significant changes in shape, or shearing strains. In addition, part of the original pressure wave can reflect off a boundary of lower impedance, which is marked by either changes in tissue density or compliance, resulting in a negative, tensile, pressure reflection wave [8]. While a significant body of work has begun to detail the interaction of the compressive part of the wave with brain tissue and its cells [9–12], we will focus our attention here on the negative, or tensile character of the pressure wave. Recent experimental and finite element investigations simulating blasts to the head and brain have shown that these negative, tensile region of pressure can give rise to the phenomenon known as cavitation, which generally denotes the formation of vapor bubbles from a liquid [13,14]. Cavitation Microcavitation: the key to modeling blast traumatic brain injury?","PeriodicalId":37006,"journal":{"name":"Concussion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/cnc-2017-0011","citationCount":"19","resultStr":"{\"title\":\"Microcavitation: the key to modeling blast traumatic brain injury?\",\"authors\":\"Christian Franck\",\"doi\":\"10.2217/cnc-2017-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traumatic brain injuries (TBIs) are a significant source of deaths and disabilities worldwide with an associated healthcare burden in the billions of dollars [1]. Brain injuries generally result from either direct impact, blast or rapid acceleration and deceleration of the brain, and their severity is graded neurosymptomatically from mild to severe using the Glasgow Coma Scale. While these injuries, which in their mild form include concussions, are generally initiated by mechanical stress waves traveling through the brain resulting in exceeding tissue damage quantified as either compressive, tensile or shearing strains [2–4], blast TBIs have a slightly different origin, and as thus their injury mechanism and pathology remain an active topic of research [5,6]. In blast waves generated from explosions, including improvised explosive devices (IEDs) [6,7], the initial blast-generated shock wave profile features a sudden increase in pressure, often referred to as overpressure, followed by a low magnitude long-range negative pressure tail [5,7]. This profile is significantly different from most civilian blunt head impact scenarios, which, at least initially, are almost entirely composed of fast traveling pressure waves [5]. These shock-like pressure profiles introduce significant pressure changes across the brain on the order of a microto submilliseconds, whereas typical blunt trauma stresses change over the course of milliseconds and above. The classification of blast TBI has its own categorization from primary to quaternary blast injury [6]. Secondary to quaternary blast injuries have correlates in the civilian world whereas primary blast injuries that are classified by the interaction of the blast wave itself with the brain are unique to military and law enforcement personnel. Details of the origin of the injury and its pathology have remained elusive. Part of the challenge in dissecting the details of blast injury lies in the complex physical interaction between the fast moving pressure wave and the compliant brain. Furthermore, our understanding of the deformation behavior of soft brain tissue and its relationship to specific neuropathologies is still in its infancy. Although the initial blast wave is generally a pure pressure wave, it can turn into part pressure and part shear wave upon encountering the complex geometry of the human head and brain. While the traversing pressure wave will cause the tissue to undergo changes in volume, the shear wave can generate significant changes in shape, or shearing strains. In addition, part of the original pressure wave can reflect off a boundary of lower impedance, which is marked by either changes in tissue density or compliance, resulting in a negative, tensile, pressure reflection wave [8]. While a significant body of work has begun to detail the interaction of the compressive part of the wave with brain tissue and its cells [9–12], we will focus our attention here on the negative, or tensile character of the pressure wave. Recent experimental and finite element investigations simulating blasts to the head and brain have shown that these negative, tensile region of pressure can give rise to the phenomenon known as cavitation, which generally denotes the formation of vapor bubbles from a liquid [13,14]. Cavitation Microcavitation: the key to modeling blast traumatic brain injury?\",\"PeriodicalId\":37006,\"journal\":{\"name\":\"Concussion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2217/cnc-2017-0011\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concussion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/cnc-2017-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concussion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/cnc-2017-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 19
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microcavitation: the key to modeling blast traumatic brain injury?
Traumatic brain injuries (TBIs) are a significant source of deaths and disabilities worldwide with an associated healthcare burden in the billions of dollars [1]. Brain injuries generally result from either direct impact, blast or rapid acceleration and deceleration of the brain, and their severity is graded neurosymptomatically from mild to severe using the Glasgow Coma Scale. While these injuries, which in their mild form include concussions, are generally initiated by mechanical stress waves traveling through the brain resulting in exceeding tissue damage quantified as either compressive, tensile or shearing strains [2–4], blast TBIs have a slightly different origin, and as thus their injury mechanism and pathology remain an active topic of research [5,6]. In blast waves generated from explosions, including improvised explosive devices (IEDs) [6,7], the initial blast-generated shock wave profile features a sudden increase in pressure, often referred to as overpressure, followed by a low magnitude long-range negative pressure tail [5,7]. This profile is significantly different from most civilian blunt head impact scenarios, which, at least initially, are almost entirely composed of fast traveling pressure waves [5]. These shock-like pressure profiles introduce significant pressure changes across the brain on the order of a microto submilliseconds, whereas typical blunt trauma stresses change over the course of milliseconds and above. The classification of blast TBI has its own categorization from primary to quaternary blast injury [6]. Secondary to quaternary blast injuries have correlates in the civilian world whereas primary blast injuries that are classified by the interaction of the blast wave itself with the brain are unique to military and law enforcement personnel. Details of the origin of the injury and its pathology have remained elusive. Part of the challenge in dissecting the details of blast injury lies in the complex physical interaction between the fast moving pressure wave and the compliant brain. Furthermore, our understanding of the deformation behavior of soft brain tissue and its relationship to specific neuropathologies is still in its infancy. Although the initial blast wave is generally a pure pressure wave, it can turn into part pressure and part shear wave upon encountering the complex geometry of the human head and brain. While the traversing pressure wave will cause the tissue to undergo changes in volume, the shear wave can generate significant changes in shape, or shearing strains. In addition, part of the original pressure wave can reflect off a boundary of lower impedance, which is marked by either changes in tissue density or compliance, resulting in a negative, tensile, pressure reflection wave [8]. While a significant body of work has begun to detail the interaction of the compressive part of the wave with brain tissue and its cells [9–12], we will focus our attention here on the negative, or tensile character of the pressure wave. Recent experimental and finite element investigations simulating blasts to the head and brain have shown that these negative, tensile region of pressure can give rise to the phenomenon known as cavitation, which generally denotes the formation of vapor bubbles from a liquid [13,14]. Cavitation Microcavitation: the key to modeling blast traumatic brain injury?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concussion
Concussion Medicine-Neurology (clinical)
CiteScore
2.70
自引率
0.00%
发文量
2
审稿时长
12 weeks
期刊最新文献
Persistent post-concussion symptoms include neural auditory processing in young children. Initial investigation of kinesiophobia as a predictor of functional reaction time one year after concussion Awareness and understanding of concussion among Aboriginal Australians with high health literacy Dual statistical models link baseline visual attention measure to risk for significant symptomatic concussion in sports The National Football League and traumatic brain injury: blood-based evaluation at the game
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1