美洲龙虾眼柄神经节中神经肽、胺、可扩散气体和小分子递质生物合成酶的分子特征。

Q4 Neuroscience Invertebrate Neuroscience Pub Date : 2018-10-01 DOI:10.1007/s10158-018-0216-4
Andrew E Christie, Meredith E Stanhope, Helen I Gandler, Tess J Lameyer, Micah G Pascual, Devlin N Shea, Andy Yu, Patsy S Dickinson, J Joe Hull
{"title":"美洲龙虾眼柄神经节中神经肽、胺、可扩散气体和小分子递质生物合成酶的分子特征。","authors":"Andrew E Christie,&nbsp;Meredith E Stanhope,&nbsp;Helen I Gandler,&nbsp;Tess J Lameyer,&nbsp;Micah G Pascual,&nbsp;Devlin N Shea,&nbsp;Andy Yu,&nbsp;Patsy S Dickinson,&nbsp;J Joe Hull","doi":"10.1007/s10158-018-0216-4","DOIUrl":null,"url":null,"abstract":"<p><p>The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 4","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0216-4","citationCount":"9","resultStr":"{\"title\":\"Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus.\",\"authors\":\"Andrew E Christie,&nbsp;Meredith E Stanhope,&nbsp;Helen I Gandler,&nbsp;Tess J Lameyer,&nbsp;Micah G Pascual,&nbsp;Devlin N Shea,&nbsp;Andy Yu,&nbsp;Patsy S Dickinson,&nbsp;J Joe Hull\",\"doi\":\"10.1007/s10158-018-0216-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"18 4\",\"pages\":\"12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-018-0216-4\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-018-0216-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-018-0216-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 9

摘要

美洲龙虾(Homarus americanus)是研究生理和行为的神经调节控制的一个模型。先前的研究表明,在这个物种中,多种化学物质作为局部释放/循环的神经调节剂/神经递质。有趣的是,虽然从Homarus中已知了许多神经活性化合物,但很少有工作集中在鉴定/表征负责其生物合成的酶上,尽管这些酶是调节神经调节/神经传递的关键成分。在这里,我们挖掘了一个眼柄神经节特异性转录组,用于编码参与神经肽、胺、扩散气体和小分子递质生物合成的酶。以已知的黑腹果蝇蛋白为模板,在眼柄组装体中鉴定了肽前体加工(信号肽肽酶、激素前加工蛋白酶和羧肽酶)和未成熟肽修饰(谷氨酰胺环化酶、酪氨酸蛋白硫转移酶、蛋白质二硫异构酶、肽基甘氨酸-α-羟化单加氧酶和肽基-α-羟甘氨酸-α-酰胺化裂解酶)的同源物。同样,从眼杆神经节中也鉴定出了负责多巴胺[色氨酸-苯丙氨酸羟化酶(TPH)、酪氨酸羟化酶和多巴脱羧酶(DDC)]、章鱼胺(TPH、酪氨酸脱羧酶和酪胺β-羟化酶)、血清素(TPH或色氨酸羟化酶和DDC)和组胺(组氨酸脱羧酶)生物合成的酶的全补体转录本。这些细胞负责产生一氧化氮(一氧化氮合酶)和一氧化碳(血红素加氧酶),以及小分子递质乙酰胆碱(胆碱乙酰转移酶)、谷氨酸(谷氨酰胺酶)和GABA(谷氨酸脱羧酶)。使用RT-PCR证实了转录组衍生转录物的存在和身份。本文提供的数据为未来在Homarus神经递质/调节剂生物合成水平上基于基因的神经调节控制研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus.

The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Invertebrate Neuroscience
Invertebrate Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include: Functional analysis of the invertebrate nervous system; Molecular neuropharmacology and toxicology; Neurogenetics and genomics; Functional anatomy; Neurodevelopment; Neuronal networks; Molecular and cellular mechanisms of behavior and behavioural plasticity.
期刊最新文献
In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. Multi-marker approach for the evaluation of environmental impacts of APACS 50WG on aquatic ecosystems. Pedal serotonergic neuron clusters of the pteropod mollusc, Clione limacina, contain two morphological subtypes with different innervation targets. Pharmacological characterization of the forced swim test in Drosophila melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1