生存函数的Breslow估计量和Kalbfleisch Prentice估计量的经验比较

Journal of biometrics & biostatistics Pub Date : 2018-01-01 Epub Date: 2018-02-28 DOI:10.4172/2155-6180.1000392
Fang Xia, Jing Ning, Xuelin Huang
{"title":"生存函数的Breslow估计量和Kalbfleisch Prentice估计量的经验比较","authors":"Fang Xia,&nbsp;Jing Ning,&nbsp;Xuelin Huang","doi":"10.4172/2155-6180.1000392","DOIUrl":null,"url":null,"abstract":"<p><p>When analyzing time-to-event data in a non-parametric setting without considering covariates, the Kaplan-Meier estimator is widely used to estimate the survival function. When considering covariates, the Cox proportional hazards model is widely used to account for covariates effects. In this setting, for the baseline survival function, the most commonly used approach is the Breslow method, which estimates the baseline survival function as an exponential function of the cumulative baseline hazard function. However, an unnatural and undesirable feature of the Breslow estimator is that, its estimated survival probability will never reaches zero even if the last observation is an event. In this article, we consider an less commonly used alternative, the Kalbfleisch Prentice estimator for the baseline survival function. It is the counterpart of the Kaplan-Meier estimator in a setting with covariates, and thus similarly as the Kaplan Meier estimator, it will reach zero if the last observation is an event. To evaluate the usefulness of the Kalbfleisch Prentice estimator and its relative performance comparing with the Breslow estimator, we conduct simulation studies across a range of conditions by varying the true survival time distribution, sample size, censoring rate and covariate values. We compare the performance of the two estimators regarding bias, mean squared error and relative mean squared error. In most situations in our study, the Kalbfleisch Prentice estimator results in less bias and smaller mean squared error than the Breslow estimator. Their differences are especially clear at the tail of the distribution. The implications of such differences in applications are discussed. We advocate the use of Kalbfleisch Prentice estimator in practice, and further research on its properties.</p>","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-6180.1000392","citationCount":"11","resultStr":"{\"title\":\"Empirical Comparison of the Breslow Estimator and the Kalbfleisch Prentice Estimator for Survival Functions.\",\"authors\":\"Fang Xia,&nbsp;Jing Ning,&nbsp;Xuelin Huang\",\"doi\":\"10.4172/2155-6180.1000392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When analyzing time-to-event data in a non-parametric setting without considering covariates, the Kaplan-Meier estimator is widely used to estimate the survival function. When considering covariates, the Cox proportional hazards model is widely used to account for covariates effects. In this setting, for the baseline survival function, the most commonly used approach is the Breslow method, which estimates the baseline survival function as an exponential function of the cumulative baseline hazard function. However, an unnatural and undesirable feature of the Breslow estimator is that, its estimated survival probability will never reaches zero even if the last observation is an event. In this article, we consider an less commonly used alternative, the Kalbfleisch Prentice estimator for the baseline survival function. It is the counterpart of the Kaplan-Meier estimator in a setting with covariates, and thus similarly as the Kaplan Meier estimator, it will reach zero if the last observation is an event. To evaluate the usefulness of the Kalbfleisch Prentice estimator and its relative performance comparing with the Breslow estimator, we conduct simulation studies across a range of conditions by varying the true survival time distribution, sample size, censoring rate and covariate values. We compare the performance of the two estimators regarding bias, mean squared error and relative mean squared error. In most situations in our study, the Kalbfleisch Prentice estimator results in less bias and smaller mean squared error than the Breslow estimator. Their differences are especially clear at the tail of the distribution. The implications of such differences in applications are discussed. We advocate the use of Kalbfleisch Prentice estimator in practice, and further research on its properties.</p>\",\"PeriodicalId\":87294,\"journal\":{\"name\":\"Journal of biometrics & biostatistics\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2155-6180.1000392\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biometrics & biostatistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6180.1000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

当在不考虑协变量的非参数设置中分析时间到事件数据时,Kaplan-Meier估计量被广泛用于估计生存函数。当考虑协变量时,Cox比例风险模型被广泛用于解释协变量效应。在这种情况下,对于基线生存函数,最常用的方法是Breslow方法,该方法将基线生存函数估计为累积基线危险函数的指数函数。然而,Breslow估计器的一个不自然和不受欢迎的特征是,即使最后一次观察是一个事件,其估计的生存概率也永远不会达到零。在本文中,我们考虑一种不太常用的替代方法,即基线生存函数的Kalbfleisch Prentice估计器。在有协变量的情况下,它是Kaplan-Meier估计量的对应项,因此与Kaplan-Meier估计量类似,如果最后一次观测是一个事件,它将达到零。为了评估Kalbfleisch Prentice估计器的实用性及其与Breslow估计器的相对性能,我们通过改变真实生存时间分布、样本量、审查率和协变量值,在一系列条件下进行了模拟研究。我们比较了两种估计器在偏差、均方误差和相对均方误差方面的性能。在我们研究的大多数情况下,Kalbfleisch Prentice估计比Breslow估计产生更小的偏差和更小的均方误差。它们的差异在分布的尾部尤为明显。讨论了应用中这种差异的含义。我们提倡在实践中使用Kalbfleisch普伦蒂斯估计量,并进一步研究其性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical Comparison of the Breslow Estimator and the Kalbfleisch Prentice Estimator for Survival Functions.

When analyzing time-to-event data in a non-parametric setting without considering covariates, the Kaplan-Meier estimator is widely used to estimate the survival function. When considering covariates, the Cox proportional hazards model is widely used to account for covariates effects. In this setting, for the baseline survival function, the most commonly used approach is the Breslow method, which estimates the baseline survival function as an exponential function of the cumulative baseline hazard function. However, an unnatural and undesirable feature of the Breslow estimator is that, its estimated survival probability will never reaches zero even if the last observation is an event. In this article, we consider an less commonly used alternative, the Kalbfleisch Prentice estimator for the baseline survival function. It is the counterpart of the Kaplan-Meier estimator in a setting with covariates, and thus similarly as the Kaplan Meier estimator, it will reach zero if the last observation is an event. To evaluate the usefulness of the Kalbfleisch Prentice estimator and its relative performance comparing with the Breslow estimator, we conduct simulation studies across a range of conditions by varying the true survival time distribution, sample size, censoring rate and covariate values. We compare the performance of the two estimators regarding bias, mean squared error and relative mean squared error. In most situations in our study, the Kalbfleisch Prentice estimator results in less bias and smaller mean squared error than the Breslow estimator. Their differences are especially clear at the tail of the distribution. The implications of such differences in applications are discussed. We advocate the use of Kalbfleisch Prentice estimator in practice, and further research on its properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSPECTIVELY ESTIMATING THE AGE OF INITIATION OF E-CIGARETTES AMONG U.S. YOUTH: FINDINGS FROM THE POPULATION ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY, 2013-2017. The Kumaraswamy-Rani Distribution and Its Applications Analytical Visual Methods to Describe Practice Patterns in a Newly Diagnosed Multiple Myeloma Non-Interventional Disease Registry Short Prognostic APP for Multiple Myeloma Sample Size Charts for Spearman and Kendall Coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1