Brennetta J Crenshaw, Linlin Gu, Brian Sims, Qiana L Matthews
{"title":"响应病毒感染的外泌体生物发生和生物学功能。","authors":"Brennetta J Crenshaw, Linlin Gu, Brian Sims, Qiana L Matthews","doi":"10.2174/1874357901812010134","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Exosomes are extracellular vesicles that originate as intraluminal vesicles during the process of multivescular body formation. Exosomes mediate intercellular transfer of functional proteins, lipids, and RNAs. The investigation into the formation and role of exosomes in viral infections is still being elucidated. Exosomes and several viruses share similar structural and molecular characteristics.</p><p><strong>Explanation: </strong>It has been documented that viral hijacking exploits the exosomal pathway and mimics cellular protein trafficking. Exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modify recipient host cell responses. Recent studies have demonstrated that exosomes are crucial components in the pathogenesis of virus infection. Exosomes also allow the host to produce effective immunity against pathogens by activating antiviral mechanisms and transporting antiviral factors between adjacent cells.</p><p><strong>Conclusion: </strong>Given the ever-growing roles and importance of exosomes in both host and pathogen response, this review will address the impact role of exosome biogenesis and composition after DNA, RNA virus, on Retrovirus infections. This review also will also address how exosomes can be used as therapeutic agents as well as a vaccine vehicles.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"12 ","pages":"134-148"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874357901812010134","citationCount":"77","resultStr":"{\"title\":\"Exosome Biogenesis and Biological Function in Response to Viral Infections.\",\"authors\":\"Brennetta J Crenshaw, Linlin Gu, Brian Sims, Qiana L Matthews\",\"doi\":\"10.2174/1874357901812010134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Exosomes are extracellular vesicles that originate as intraluminal vesicles during the process of multivescular body formation. Exosomes mediate intercellular transfer of functional proteins, lipids, and RNAs. The investigation into the formation and role of exosomes in viral infections is still being elucidated. Exosomes and several viruses share similar structural and molecular characteristics.</p><p><strong>Explanation: </strong>It has been documented that viral hijacking exploits the exosomal pathway and mimics cellular protein trafficking. Exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modify recipient host cell responses. Recent studies have demonstrated that exosomes are crucial components in the pathogenesis of virus infection. Exosomes also allow the host to produce effective immunity against pathogens by activating antiviral mechanisms and transporting antiviral factors between adjacent cells.</p><p><strong>Conclusion: </strong>Given the ever-growing roles and importance of exosomes in both host and pathogen response, this review will address the impact role of exosome biogenesis and composition after DNA, RNA virus, on Retrovirus infections. This review also will also address how exosomes can be used as therapeutic agents as well as a vaccine vehicles.</p>\",\"PeriodicalId\":23111,\"journal\":{\"name\":\"The Open Virology Journal\",\"volume\":\"12 \",\"pages\":\"134-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1874357901812010134\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Virology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874357901812010134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Virology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874357901812010134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Exosome Biogenesis and Biological Function in Response to Viral Infections.
Introduction: Exosomes are extracellular vesicles that originate as intraluminal vesicles during the process of multivescular body formation. Exosomes mediate intercellular transfer of functional proteins, lipids, and RNAs. The investigation into the formation and role of exosomes in viral infections is still being elucidated. Exosomes and several viruses share similar structural and molecular characteristics.
Explanation: It has been documented that viral hijacking exploits the exosomal pathway and mimics cellular protein trafficking. Exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modify recipient host cell responses. Recent studies have demonstrated that exosomes are crucial components in the pathogenesis of virus infection. Exosomes also allow the host to produce effective immunity against pathogens by activating antiviral mechanisms and transporting antiviral factors between adjacent cells.
Conclusion: Given the ever-growing roles and importance of exosomes in both host and pathogen response, this review will address the impact role of exosome biogenesis and composition after DNA, RNA virus, on Retrovirus infections. This review also will also address how exosomes can be used as therapeutic agents as well as a vaccine vehicles.