不可忽略的缺失数据对无标记质谱蛋白质组学实验的影响。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2018-12-01 Epub Date: 2018-11-13 DOI:10.1214/18-AOAS1144
Jonathon J O'Brien, Harsha P Gunawardena, Joao A Paulo, Xian Chen, Joseph G Ibrahim, Steven P Gygi, Bahjat F Qaqish
{"title":"不可忽略的缺失数据对无标记质谱蛋白质组学实验的影响。","authors":"Jonathon J O'Brien,&nbsp;Harsha P Gunawardena,&nbsp;Joao A Paulo,&nbsp;Xian Chen,&nbsp;Joseph G Ibrahim,&nbsp;Steven P Gygi,&nbsp;Bahjat F Qaqish","doi":"10.1214/18-AOAS1144","DOIUrl":null,"url":null,"abstract":"<p><p>An idealized version of a label-free discovery mass spectrometry proteomics experiment would provide absolute abundance measurements for a whole proteome, across varying conditions. Unfortunately, this ideal is not realized. Measurements are made on peptides requiring an inferential step to obtain protein level estimates. The inference is complicated by experimental factors that necessitate relative abundance estimation and result in widespread non-ignorable missing data. Relative abundance on the log scale takes the form of parameter contrasts. In a complete-case analysis, contrast estimates may be biased by missing data and a substantial amount of useful information will often go unused. To avoid problems with missing data, many analysts have turned to single imputation solutions. Unfortunately, these methods often create further difficulties by hiding inestimable contrasts, preventing the recovery of interblock information and failing to account for imputation uncertainty. To mitigate many of the problems caused by missing values, we propose the use of a Bayesian selection model. Our model is tested on simulated data, real data with simulated missing values, and on a ground truth dilution experiment where all of the true relative changes are known. The analysis suggests that our model, compared with various imputation strategies and complete-case analyses, can increase accuracy and provide substantial improvements to interval coverage.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 4","pages":"2075-2095"},"PeriodicalIF":1.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/18-AOAS1144","citationCount":"31","resultStr":"{\"title\":\"The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments.\",\"authors\":\"Jonathon J O'Brien,&nbsp;Harsha P Gunawardena,&nbsp;Joao A Paulo,&nbsp;Xian Chen,&nbsp;Joseph G Ibrahim,&nbsp;Steven P Gygi,&nbsp;Bahjat F Qaqish\",\"doi\":\"10.1214/18-AOAS1144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An idealized version of a label-free discovery mass spectrometry proteomics experiment would provide absolute abundance measurements for a whole proteome, across varying conditions. Unfortunately, this ideal is not realized. Measurements are made on peptides requiring an inferential step to obtain protein level estimates. The inference is complicated by experimental factors that necessitate relative abundance estimation and result in widespread non-ignorable missing data. Relative abundance on the log scale takes the form of parameter contrasts. In a complete-case analysis, contrast estimates may be biased by missing data and a substantial amount of useful information will often go unused. To avoid problems with missing data, many analysts have turned to single imputation solutions. Unfortunately, these methods often create further difficulties by hiding inestimable contrasts, preventing the recovery of interblock information and failing to account for imputation uncertainty. To mitigate many of the problems caused by missing values, we propose the use of a Bayesian selection model. Our model is tested on simulated data, real data with simulated missing values, and on a ground truth dilution experiment where all of the true relative changes are known. The analysis suggests that our model, compared with various imputation strategies and complete-case analyses, can increase accuracy and provide substantial improvements to interval coverage.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"12 4\",\"pages\":\"2075-2095\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/18-AOAS1144\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1144\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1144","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 31

摘要

无标记发现质谱蛋白质组学实验的理想化版本将在不同条件下为整个蛋白质组提供绝对丰度测量。不幸的是,这个理想没有实现。对需要推断步骤以获得蛋白质水平估计的肽进行测量。实验因素使推断变得复杂,这些因素需要相对丰度估计,并导致广泛的不可忽略的数据缺失。对数尺度上的相对丰度采用参数对比的形式。在一个完整的案例分析中,对比度估计可能会因数据缺失而产生偏差,大量有用的信息往往会被闲置。为了避免数据缺失的问题,许多分析师已经转向单一插补解决方案。不幸的是,这些方法往往会隐藏不可估量的对比,阻止块间信息的恢复,并且未能考虑插补的不确定性,从而造成进一步的困难。为了减轻因缺失值而引起的许多问题,我们建议使用贝叶斯选择模型。我们的模型在模拟数据、具有模拟缺失值的真实数据以及已知所有真实相对变化的真实稀释实验上进行了测试。分析表明,与各种插补策略和完整的案例分析相比,我们的模型可以提高准确性,并大幅提高区间覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments.

An idealized version of a label-free discovery mass spectrometry proteomics experiment would provide absolute abundance measurements for a whole proteome, across varying conditions. Unfortunately, this ideal is not realized. Measurements are made on peptides requiring an inferential step to obtain protein level estimates. The inference is complicated by experimental factors that necessitate relative abundance estimation and result in widespread non-ignorable missing data. Relative abundance on the log scale takes the form of parameter contrasts. In a complete-case analysis, contrast estimates may be biased by missing data and a substantial amount of useful information will often go unused. To avoid problems with missing data, many analysts have turned to single imputation solutions. Unfortunately, these methods often create further difficulties by hiding inestimable contrasts, preventing the recovery of interblock information and failing to account for imputation uncertainty. To mitigate many of the problems caused by missing values, we propose the use of a Bayesian selection model. Our model is tested on simulated data, real data with simulated missing values, and on a ground truth dilution experiment where all of the true relative changes are known. The analysis suggests that our model, compared with various imputation strategies and complete-case analyses, can increase accuracy and provide substantial improvements to interval coverage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE. PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1