回顾:胸部前后片结节分割的研究。

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2018-10-18 eCollection Date: 2018-01-01 DOI:10.1155/2018/9752638
S K Chaya Devi, T Satya Savithri
{"title":"回顾:胸部前后片结节分割的研究。","authors":"S K Chaya Devi,&nbsp;T Satya Savithri","doi":"10.1155/2018/9752638","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is one of the major types of cancer in the world. Survival rate can be increased if the disease can be identified early. Posterior and anterior chest radiography and computerized tomography scans are the most used diagnosis techniques for detecting tumor from lungs. Posterior and anterior chest radiography requires less radiation dose and is available in most of the diagnostic centers and it costs less compared to the remaining diagnosis techniques. So PA chest radiography became the most commonly used technique for lung cancer detection. Because of superimposed anatomical structures present in the image, sometimes radiologists cannot find abnormalities from the image. To help radiologists in diagnosing tumor from PA chest radiographic images range of CAD scheme has been developed for the past three decades. These computerized tools may be used by radiologists as a second opinion in detecting tumor. Literature survey on detecting tumors from chest graphs is presented in this paper.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9752638","citationCount":"4","resultStr":"{\"title\":\"Review: On Segmentation of Nodules from Posterior and Anterior Chest Radiographs.\",\"authors\":\"S K Chaya Devi,&nbsp;T Satya Savithri\",\"doi\":\"10.1155/2018/9752638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is one of the major types of cancer in the world. Survival rate can be increased if the disease can be identified early. Posterior and anterior chest radiography and computerized tomography scans are the most used diagnosis techniques for detecting tumor from lungs. Posterior and anterior chest radiography requires less radiation dose and is available in most of the diagnostic centers and it costs less compared to the remaining diagnosis techniques. So PA chest radiography became the most commonly used technique for lung cancer detection. Because of superimposed anatomical structures present in the image, sometimes radiologists cannot find abnormalities from the image. To help radiologists in diagnosing tumor from PA chest radiographic images range of CAD scheme has been developed for the past three decades. These computerized tools may be used by radiologists as a second opinion in detecting tumor. Literature survey on detecting tumors from chest graphs is presented in this paper.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2018-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/9752638\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/9752638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/9752638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

摘要

肺癌是世界上主要的癌症类型之一。如果能及早发现这种疾病,可以提高生存率。胸部后路和前路x线摄影和计算机断层扫描是检测肺部肿瘤最常用的诊断技术。胸部后路和前路x线摄影需要较少的辐射剂量,在大多数诊断中心都可以获得,与其他诊断技术相比,它的成本更低。因此,PA胸片成为肺癌检测中最常用的技术。由于图像中存在重叠的解剖结构,有时放射科医生无法从图像中发现异常。为了帮助放射科医生从胸片图像中诊断肿瘤,CAD方案的范围已经发展了三十年。这些计算机化的工具可能被放射科医生用作检测肿瘤的第二意见。本文综述了从胸部图像中检测肿瘤的相关文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review: On Segmentation of Nodules from Posterior and Anterior Chest Radiographs.

Lung cancer is one of the major types of cancer in the world. Survival rate can be increased if the disease can be identified early. Posterior and anterior chest radiography and computerized tomography scans are the most used diagnosis techniques for detecting tumor from lungs. Posterior and anterior chest radiography requires less radiation dose and is available in most of the diagnostic centers and it costs less compared to the remaining diagnosis techniques. So PA chest radiography became the most commonly used technique for lung cancer detection. Because of superimposed anatomical structures present in the image, sometimes radiologists cannot find abnormalities from the image. To help radiologists in diagnosing tumor from PA chest radiographic images range of CAD scheme has been developed for the past three decades. These computerized tools may be used by radiologists as a second opinion in detecting tumor. Literature survey on detecting tumors from chest graphs is presented in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1