{"title":"从日本千叶土壤中分离的一种溴酸还原菌红球菌Br-6的基因组分析","authors":"Kohei Ito, Masafumi Harada, Nobuyoshi Nakajima, Shigeki Yamamura, Masaru Tomita, Haruo Suzuki, Seigo Amachi","doi":"10.7150/jgen.27741","DOIUrl":null,"url":null,"abstract":"<p><p>Bromate is a byproduct of the ozone disinfection of drinking water. It is a genotoxic carcinogen and causes renal cell tumors in rats. Physicochemical removal of bromate is very difficult, making microbial reduction of bromate to bromide a promising approach to eliminate bromate from water. <i>Rhodococcus</i> sp. Br-6, isolated from soil, can efficiently reduce bromate by using acetate as an electron donor. We determined the draft genome sequence of <i>Rhodococcus</i> sp. Br-6 for the potential practical application of the bromate-reducing bacterium. Core genome phylogeny suggests that the Br-6 strain is most closely related to <i>R. equi</i>. The Br-6 genome contains genes encoding multiple isoforms of diaphorase, previously found to be involved in Br-6-mediated bromate reduction. The genes identified in the present study could be effective targets for experimental studies of microbial bromate reduction in the future.</p>","PeriodicalId":15834,"journal":{"name":"Journal of Genomics","volume":"6 ","pages":"122-126"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.7150/jgen.27741","citationCount":"0","resultStr":"{\"title\":\"Genomic Analysis of <i>Rhodococcus</i> sp. Br-6, a Bromate Reducing Bacterium Isolated From Soil in Chiba, Japan.\",\"authors\":\"Kohei Ito, Masafumi Harada, Nobuyoshi Nakajima, Shigeki Yamamura, Masaru Tomita, Haruo Suzuki, Seigo Amachi\",\"doi\":\"10.7150/jgen.27741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bromate is a byproduct of the ozone disinfection of drinking water. It is a genotoxic carcinogen and causes renal cell tumors in rats. Physicochemical removal of bromate is very difficult, making microbial reduction of bromate to bromide a promising approach to eliminate bromate from water. <i>Rhodococcus</i> sp. Br-6, isolated from soil, can efficiently reduce bromate by using acetate as an electron donor. We determined the draft genome sequence of <i>Rhodococcus</i> sp. Br-6 for the potential practical application of the bromate-reducing bacterium. Core genome phylogeny suggests that the Br-6 strain is most closely related to <i>R. equi</i>. The Br-6 genome contains genes encoding multiple isoforms of diaphorase, previously found to be involved in Br-6-mediated bromate reduction. The genes identified in the present study could be effective targets for experimental studies of microbial bromate reduction in the future.</p>\",\"PeriodicalId\":15834,\"journal\":{\"name\":\"Journal of Genomics\",\"volume\":\"6 \",\"pages\":\"122-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.7150/jgen.27741\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7150/jgen.27741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7150/jgen.27741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Genomic Analysis of Rhodococcus sp. Br-6, a Bromate Reducing Bacterium Isolated From Soil in Chiba, Japan.
Bromate is a byproduct of the ozone disinfection of drinking water. It is a genotoxic carcinogen and causes renal cell tumors in rats. Physicochemical removal of bromate is very difficult, making microbial reduction of bromate to bromide a promising approach to eliminate bromate from water. Rhodococcus sp. Br-6, isolated from soil, can efficiently reduce bromate by using acetate as an electron donor. We determined the draft genome sequence of Rhodococcus sp. Br-6 for the potential practical application of the bromate-reducing bacterium. Core genome phylogeny suggests that the Br-6 strain is most closely related to R. equi. The Br-6 genome contains genes encoding multiple isoforms of diaphorase, previously found to be involved in Br-6-mediated bromate reduction. The genes identified in the present study could be effective targets for experimental studies of microbial bromate reduction in the future.
期刊介绍:
Journal of Genomics publishes papers of high quality in all areas of gene, genetics, genomics, proteomics, metabolomics, DNA/RNA, computational biology, bioinformatics, and other relevant areas of research and application. Articles published by the journal are rigorously peer-reviewed. Types of articles include: Research paper, Short research communication, Review or mini-reviews, Commentary, Database, Software.