{"title":"在阿巴拉契亚中部地下煤矿用独立路线测量穿梭车气流速度的实地调查。","authors":"M Shahan, W R Reed, M Yekich, G Ross","doi":"10.19150/me.8601","DOIUrl":null,"url":null,"abstract":"<p><p>Canopy air curtains on roof bolting machines have been proven to protect miners from respirable dust, preventing their overexposure to dust. Another desired application for canopy air curtains is in the compartments of shuttle cars. The challenges faced in developing the design of canopy air curtains for shuttle cars include mine ventilation rates in tandem with the shuttle car tram speeds. The resulting cab airspeeds may exceed 182 m/min (600 fpm), as found in the present study conducted in a central Appalachian underground coal mine by U.S. National Institute for Occupational Safety and Health (NIOSH) researchers. Prior research and laboratory testing had indicated that successfully protecting a miner in high air velocities is difficult, because the clean air from the canopy air curtain is unable to penetrate through the high-velocity mine air. In this study, the dust concentrations to which a shuttle car operator was exposed were measured, and air velocities experienced by the operator were measured as well using a recording vane anemometer. The results indicate that the highest exposure to respirable dust, 2.22 mg/m<sup>3</sup>, occurred when the shuttle car was loading at the continuous miner, where the average airspeed was 48 m/min (157 fpm). While tramming, the operator was exposed to 0.77 mg/m<sup>3</sup> of respirable dust with an average airspeed of 62 m/min (203 fpm). This study indicates that a canopy air curtain system can be designed to greatly reduce an operator's exposure to respirable dust by providing clean air to the operator, as the majority of the operator's dust exposure occurs in air velocities slower than 61 m/min (200 fpm).</p>","PeriodicalId":91142,"journal":{"name":"Mining engineering","volume":"70 11","pages":"45-51"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298443/pdf/nihms-997352.pdf","citationCount":"1","resultStr":"{\"title\":\"Field investigation to measure airflow velocities of a shuttle car using independent routes at a central Appalachian underground coal mine.\",\"authors\":\"M Shahan, W R Reed, M Yekich, G Ross\",\"doi\":\"10.19150/me.8601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Canopy air curtains on roof bolting machines have been proven to protect miners from respirable dust, preventing their overexposure to dust. Another desired application for canopy air curtains is in the compartments of shuttle cars. The challenges faced in developing the design of canopy air curtains for shuttle cars include mine ventilation rates in tandem with the shuttle car tram speeds. The resulting cab airspeeds may exceed 182 m/min (600 fpm), as found in the present study conducted in a central Appalachian underground coal mine by U.S. National Institute for Occupational Safety and Health (NIOSH) researchers. Prior research and laboratory testing had indicated that successfully protecting a miner in high air velocities is difficult, because the clean air from the canopy air curtain is unable to penetrate through the high-velocity mine air. In this study, the dust concentrations to which a shuttle car operator was exposed were measured, and air velocities experienced by the operator were measured as well using a recording vane anemometer. The results indicate that the highest exposure to respirable dust, 2.22 mg/m<sup>3</sup>, occurred when the shuttle car was loading at the continuous miner, where the average airspeed was 48 m/min (157 fpm). While tramming, the operator was exposed to 0.77 mg/m<sup>3</sup> of respirable dust with an average airspeed of 62 m/min (203 fpm). This study indicates that a canopy air curtain system can be designed to greatly reduce an operator's exposure to respirable dust by providing clean air to the operator, as the majority of the operator's dust exposure occurs in air velocities slower than 61 m/min (200 fpm).</p>\",\"PeriodicalId\":91142,\"journal\":{\"name\":\"Mining engineering\",\"volume\":\"70 11\",\"pages\":\"45-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298443/pdf/nihms-997352.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19150/me.8601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/me.8601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Field investigation to measure airflow velocities of a shuttle car using independent routes at a central Appalachian underground coal mine.
Canopy air curtains on roof bolting machines have been proven to protect miners from respirable dust, preventing their overexposure to dust. Another desired application for canopy air curtains is in the compartments of shuttle cars. The challenges faced in developing the design of canopy air curtains for shuttle cars include mine ventilation rates in tandem with the shuttle car tram speeds. The resulting cab airspeeds may exceed 182 m/min (600 fpm), as found in the present study conducted in a central Appalachian underground coal mine by U.S. National Institute for Occupational Safety and Health (NIOSH) researchers. Prior research and laboratory testing had indicated that successfully protecting a miner in high air velocities is difficult, because the clean air from the canopy air curtain is unable to penetrate through the high-velocity mine air. In this study, the dust concentrations to which a shuttle car operator was exposed were measured, and air velocities experienced by the operator were measured as well using a recording vane anemometer. The results indicate that the highest exposure to respirable dust, 2.22 mg/m3, occurred when the shuttle car was loading at the continuous miner, where the average airspeed was 48 m/min (157 fpm). While tramming, the operator was exposed to 0.77 mg/m3 of respirable dust with an average airspeed of 62 m/min (203 fpm). This study indicates that a canopy air curtain system can be designed to greatly reduce an operator's exposure to respirable dust by providing clean air to the operator, as the majority of the operator's dust exposure occurs in air velocities slower than 61 m/min (200 fpm).