分析算子分布式执行的抽象成本模型。

Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun, Yi Yao
{"title":"分析算子分布式执行的抽象成本模型。","authors":"Rundong Li,&nbsp;Ningfang Mi,&nbsp;Mirek Riedewald,&nbsp;Yizhou Sun,&nbsp;Yi Yao","doi":"10.1007/978-3-319-64283-3_11","DOIUrl":null,"url":null,"abstract":"<p><p>We consider data analytics workloads on distributed architectures, in particular clusters of commodity machines. To find a job partitioning that minimizes running time, a cost model, which we more accurately refer to as makespan model, is needed. In attempting to find the simplest possible, but sufficiently accurate, such model, we explore piecewise linear functions of input, output, and computational complexity. They are abstract in the sense that they capture fundamental algorithm properties, but do not require explicit modeling of system and implementation details such as the number of disk accesses. We show how the simplified functional structure can be exploited by directly integrating the model into the makespan optimization process, reducing complexity by orders of magnitude. Experimental results provide evidence of good prediction quality and successful makespan optimization across a variety of cluster architectures.</p>","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"10440 ","pages":"149-163"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-64283-3_11","citationCount":"1","resultStr":"{\"title\":\"A Case for Abstract Cost Models for Distributed Execution of Analytics Operators.\",\"authors\":\"Rundong Li,&nbsp;Ningfang Mi,&nbsp;Mirek Riedewald,&nbsp;Yizhou Sun,&nbsp;Yi Yao\",\"doi\":\"10.1007/978-3-319-64283-3_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider data analytics workloads on distributed architectures, in particular clusters of commodity machines. To find a job partitioning that minimizes running time, a cost model, which we more accurately refer to as makespan model, is needed. In attempting to find the simplest possible, but sufficiently accurate, such model, we explore piecewise linear functions of input, output, and computational complexity. They are abstract in the sense that they capture fundamental algorithm properties, but do not require explicit modeling of system and implementation details such as the number of disk accesses. We show how the simplified functional structure can be exploited by directly integrating the model into the makespan optimization process, reducing complexity by orders of magnitude. Experimental results provide evidence of good prediction quality and successful makespan optimization across a variety of cluster architectures.</p>\",\"PeriodicalId\":92483,\"journal\":{\"name\":\"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)\",\"volume\":\"10440 \",\"pages\":\"149-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-64283-3_11\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-64283-3_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-64283-3_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑分布式架构上的数据分析工作负载,特别是商用机器集群。为了找到最小化运行时间的作业分区,需要一个成本模型,我们更准确地称之为makespan模型。在试图找到最简单但足够精确的模型时,我们探索了输入、输出和计算复杂性的分段线性函数。它们是抽象的,因为它们捕获基本的算法属性,但不需要对系统和实现细节(如磁盘访问次数)进行显式建模。我们展示了如何通过将模型直接集成到makespan优化过程中来利用简化的功能结构,从而将复杂性降低了几个数量级。实验结果提供了良好的预测质量和成功的跨各种集群架构的最大完工时间优化的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Case for Abstract Cost Models for Distributed Execution of Analytics Operators.

We consider data analytics workloads on distributed architectures, in particular clusters of commodity machines. To find a job partitioning that minimizes running time, a cost model, which we more accurately refer to as makespan model, is needed. In attempting to find the simplest possible, but sufficiently accurate, such model, we explore piecewise linear functions of input, output, and computational complexity. They are abstract in the sense that they capture fundamental algorithm properties, but do not require explicit modeling of system and implementation details such as the number of disk accesses. We show how the simplified functional structure can be exploited by directly integrating the model into the makespan optimization process, reducing complexity by orders of magnitude. Experimental results provide evidence of good prediction quality and successful makespan optimization across a variety of cluster architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data Analytics and Knowledge Discovery: 25th International Conference, DaWaK 2023, Penang, Malaysia, August 28–30, 2023, Proceedings Big Data Analytics and Knowledge Discovery: 24th International Conference, DaWaK 2022, Vienna, Austria, August 22–24, 2022, Proceedings Big Data Analytics and Knowledge Discovery: 23rd International Conference, DaWaK 2021, Virtual Event, September 27–30, 2021, Proceedings Big Data Analytics and Knowledge Discovery: 22nd International Conference, DaWaK 2020, Bratislava, Slovakia, September 14–17, 2020, Proceedings Big Data Analytics and Knowledge Discovery: 21st International Conference, DaWaK 2019, Linz, Austria, August 26–29, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1