首页 > 最新文献

Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)最新文献

英文 中文
Big Data Analytics and Knowledge Discovery: 25th International Conference, DaWaK 2023, Penang, Malaysia, August 28–30, 2023, Proceedings 大数据分析与知识发现:第25届国际会议,DaWaK 2023,槟城,马来西亚,2023年8月28-30日,论文集
{"title":"Big Data Analytics and Knowledge Discovery: 25th International Conference, DaWaK 2023, Penang, Malaysia, August 28–30, 2023, Proceedings","authors":"","doi":"10.1007/978-3-031-39831-5","DOIUrl":"https://doi.org/10.1007/978-3-031-39831-5","url":null,"abstract":"","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87122415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big Data Analytics and Knowledge Discovery: 24th International Conference, DaWaK 2022, Vienna, Austria, August 22–24, 2022, Proceedings 大数据分析与知识发现:第24届国际会议,DaWaK 2022,维也纳,奥地利,2022年8月22-24日,论文集
{"title":"Big Data Analytics and Knowledge Discovery: 24th International Conference, DaWaK 2022, Vienna, Austria, August 22–24, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-12670-3","DOIUrl":"https://doi.org/10.1007/978-3-031-12670-3","url":null,"abstract":"","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90542164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Big Data Analytics and Knowledge Discovery: 23rd International Conference, DaWaK 2021, Virtual Event, September 27–30, 2021, Proceedings 大数据分析与知识发现:第23届国际会议,DaWaK 2021,虚拟事件,2021年9月27-30日,论文集
{"title":"Big Data Analytics and Knowledge Discovery: 23rd International Conference, DaWaK 2021, Virtual Event, September 27–30, 2021, Proceedings","authors":"","doi":"10.1007/978-3-030-86534-4","DOIUrl":"https://doi.org/10.1007/978-3-030-86534-4","url":null,"abstract":"","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82077215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big Data Analytics and Knowledge Discovery: 22nd International Conference, DaWaK 2020, Bratislava, Slovakia, September 14–17, 2020, Proceedings 大数据分析与知识发现:第22届国际会议,DaWaK 2020,布拉迪斯拉发,斯洛伐克,2020年9月14-17日,论文集
Min Song, I. Song, G. Kotsis, A. Tjoa, Ismail Khalil
{"title":"Big Data Analytics and Knowledge Discovery: 22nd International Conference, DaWaK 2020, Bratislava, Slovakia, September 14–17, 2020, Proceedings","authors":"Min Song, I. Song, G. Kotsis, A. Tjoa, Ismail Khalil","doi":"10.1007/978-3-030-59065-9","DOIUrl":"https://doi.org/10.1007/978-3-030-59065-9","url":null,"abstract":"","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80605028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big Data Analytics and Knowledge Discovery: 21st International Conference, DaWaK 2019, Linz, Austria, August 26–29, 2019, Proceedings 大数据分析与知识发现:第21届国际会议,DaWaK 2019,奥地利林茨,2019年8月26-29日,论文集
C. Ordonez, I. Song, Gabriele Anderst-Kotsis, A. Tjoa, Ismail Khalil
{"title":"Big Data Analytics and Knowledge Discovery: 21st International Conference, DaWaK 2019, Linz, Austria, August 26–29, 2019, Proceedings","authors":"C. Ordonez, I. Song, Gabriele Anderst-Kotsis, A. Tjoa, Ismail Khalil","doi":"10.1007/978-3-030-27520-4","DOIUrl":"https://doi.org/10.1007/978-3-030-27520-4","url":null,"abstract":"","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"221 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83678873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Case for Abstract Cost Models for Distributed Execution of Analytics Operators. 分析算子分布式执行的抽象成本模型。
Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun, Yi Yao

We consider data analytics workloads on distributed architectures, in particular clusters of commodity machines. To find a job partitioning that minimizes running time, a cost model, which we more accurately refer to as makespan model, is needed. In attempting to find the simplest possible, but sufficiently accurate, such model, we explore piecewise linear functions of input, output, and computational complexity. They are abstract in the sense that they capture fundamental algorithm properties, but do not require explicit modeling of system and implementation details such as the number of disk accesses. We show how the simplified functional structure can be exploited by directly integrating the model into the makespan optimization process, reducing complexity by orders of magnitude. Experimental results provide evidence of good prediction quality and successful makespan optimization across a variety of cluster architectures.

我们考虑分布式架构上的数据分析工作负载,特别是商用机器集群。为了找到最小化运行时间的作业分区,需要一个成本模型,我们更准确地称之为makespan模型。在试图找到最简单但足够精确的模型时,我们探索了输入、输出和计算复杂性的分段线性函数。它们是抽象的,因为它们捕获基本的算法属性,但不需要对系统和实现细节(如磁盘访问次数)进行显式建模。我们展示了如何通过将模型直接集成到makespan优化过程中来利用简化的功能结构,从而将复杂性降低了几个数量级。实验结果提供了良好的预测质量和成功的跨各种集群架构的最大完工时间优化的证据。
{"title":"A Case for Abstract Cost Models for Distributed Execution of Analytics Operators.","authors":"Rundong Li,&nbsp;Ningfang Mi,&nbsp;Mirek Riedewald,&nbsp;Yizhou Sun,&nbsp;Yi Yao","doi":"10.1007/978-3-319-64283-3_11","DOIUrl":"https://doi.org/10.1007/978-3-319-64283-3_11","url":null,"abstract":"<p><p>We consider data analytics workloads on distributed architectures, in particular clusters of commodity machines. To find a job partitioning that minimizes running time, a cost model, which we more accurately refer to as makespan model, is needed. In attempting to find the simplest possible, but sufficiently accurate, such model, we explore piecewise linear functions of input, output, and computational complexity. They are abstract in the sense that they capture fundamental algorithm properties, but do not require explicit modeling of system and implementation details such as the number of disk accesses. We show how the simplified functional structure can be exploited by directly integrating the model into the makespan optimization process, reducing complexity by orders of magnitude. Experimental results provide evidence of good prediction quality and successful makespan optimization across a variety of cluster architectures.</p>","PeriodicalId":92483,"journal":{"name":"Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)","volume":"10440 ","pages":"149-163"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-64283-3_11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36824483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Big data analytics and knowledge discovery : 19th International Conference, DaWaK 2017, Lyon, France, August 28-31, 2017, Proceedings. DaWaK (Conference) (19th : 2017 : Lyon, France)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1