Alesandra R Nunes, Ícaro G P Vieira, Dinalva B Queiroz, Antonio Linkoln Alves Borges Leal, Selene Maia Morais, Débora Feitosa Muniz, João Tavares Calixto-Junior, Henrique Douglas Melo Coutinho
{"title":"黄酮类化合物和肉桂酸盐的应用——天然来源的主要光保护剂。","authors":"Alesandra R Nunes, Ícaro G P Vieira, Dinalva B Queiroz, Antonio Linkoln Alves Borges Leal, Selene Maia Morais, Débora Feitosa Muniz, João Tavares Calixto-Junior, Henrique Douglas Melo Coutinho","doi":"10.1155/2018/5341487","DOIUrl":null,"url":null,"abstract":"<p><p>Many pathological problems are initiated by ultraviolet radiation (UVR), such as skin cancer, the most commonly diagnosed cancer worldwide. The UVA (320-400 nm) and UVB (290-320 nm) wavelengths may cause effects such as photoaging, DNA damage, and a series of cellular alterations. The UVA radiation can damage the DNA, oxidize the lipids, and produce dangerous free radicals, which can cause inflammation, modify the gene expression in response to stress, and weaken the skin immune response. With a minor penetration, the UVB radiation is more harmful, being responsible for immediate damage. Ultraviolet radiation light emitted by the sun is considered necessary for the existence of life but cause radiation problems, especially in the skin. The photoprotective activities of plant extracts and isolated composts were evaluated by many reports, as well as the correlation of these compounds with the antioxidant activity. This review presents plant compounds with interest to the cosmetic industry to be used in sunscreens such as flavonoids and cinnamates.</p>","PeriodicalId":7389,"journal":{"name":"Advances in Pharmacological Sciences","volume":"2018 ","pages":"5341487"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5341487","citationCount":"51","resultStr":"{\"title\":\"Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin.\",\"authors\":\"Alesandra R Nunes, Ícaro G P Vieira, Dinalva B Queiroz, Antonio Linkoln Alves Borges Leal, Selene Maia Morais, Débora Feitosa Muniz, João Tavares Calixto-Junior, Henrique Douglas Melo Coutinho\",\"doi\":\"10.1155/2018/5341487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many pathological problems are initiated by ultraviolet radiation (UVR), such as skin cancer, the most commonly diagnosed cancer worldwide. The UVA (320-400 nm) and UVB (290-320 nm) wavelengths may cause effects such as photoaging, DNA damage, and a series of cellular alterations. The UVA radiation can damage the DNA, oxidize the lipids, and produce dangerous free radicals, which can cause inflammation, modify the gene expression in response to stress, and weaken the skin immune response. With a minor penetration, the UVB radiation is more harmful, being responsible for immediate damage. Ultraviolet radiation light emitted by the sun is considered necessary for the existence of life but cause radiation problems, especially in the skin. The photoprotective activities of plant extracts and isolated composts were evaluated by many reports, as well as the correlation of these compounds with the antioxidant activity. This review presents plant compounds with interest to the cosmetic industry to be used in sunscreens such as flavonoids and cinnamates.</p>\",\"PeriodicalId\":7389,\"journal\":{\"name\":\"Advances in Pharmacological Sciences\",\"volume\":\"2018 \",\"pages\":\"5341487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/5341487\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pharmacological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/5341487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pharmacological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/5341487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin.
Many pathological problems are initiated by ultraviolet radiation (UVR), such as skin cancer, the most commonly diagnosed cancer worldwide. The UVA (320-400 nm) and UVB (290-320 nm) wavelengths may cause effects such as photoaging, DNA damage, and a series of cellular alterations. The UVA radiation can damage the DNA, oxidize the lipids, and produce dangerous free radicals, which can cause inflammation, modify the gene expression in response to stress, and weaken the skin immune response. With a minor penetration, the UVB radiation is more harmful, being responsible for immediate damage. Ultraviolet radiation light emitted by the sun is considered necessary for the existence of life but cause radiation problems, especially in the skin. The photoprotective activities of plant extracts and isolated composts were evaluated by many reports, as well as the correlation of these compounds with the antioxidant activity. This review presents plant compounds with interest to the cosmetic industry to be used in sunscreens such as flavonoids and cinnamates.
期刊介绍:
Advances in Pharmacological and Pharmaceutical Sciences is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of experimental and clinical pharmacology, pharmaceutics, medicinal chemistry and drug delivery. Topics covered by the journal include, but are not limited to: -Biochemical pharmacology, drug mechanism of action, pharmacodynamics, pharmacogenetics, pharmacokinetics, and toxicology. -The design and preparation of new drugs, and their safety and efficacy in humans, including descriptions of drug dosage forms. -All areas of medicinal chemistry, such as drug discovery, design and synthesis. -Basic biology of drug and gene delivery through to application and development of these principles, through therapeutic delivery and targeting. Areas covered include bioavailability, controlled release, microcapsules, novel drug delivery systems, personalized drug delivery, and techniques for passing biological barriers.